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Application Flow
Decision Tree is one of the most fundamental algorithms for classification and regression in the
Machine Learning world.

But before proceeding with the algorithm, let’s first discuss the lifecycle of any machine learning
model. This diagram explains the creation of a Machine Learning model from scratch and then
taking the same model further with hyperparameter tuning to increase its accuracy, deciding the
deployment strategies for that model and once deployed setting up the logging and monitoring
frameworks to generate reports and dashboards based on the client requirements. A typical
lifecycle diagram for a machine learning model looks like:

Decision Tree
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Decision tree algorithm is one of the most versatile algorithms in machine learning which can
perform both classification and regression analysis. It is very powerful and works great with
complex datasets. Apart from that, it is very easy to understand and read. That makes it more
popular to use. When coupled with ensemble techniques – which we will learn very soon- it
performs even better. As the name suggests, this algorithm works by dividing the whole dataset
into a tree-like structure based on some rules and conditions and then gives prediction based on
those conditions. Let’s understand the approach to decision tree with a basic scenario. Suppose
it’s Friday night and you are not able to decide if you should go out or stay at home. Let the
decision tree decide it for you.

Although we may or may not use the decision tree for such decisions, this was a basic example to
help you understand how a decision tree makes a decision. So how did it work?

It selects a root node based on a given condition, e.g. our root node was chosen as time >10
pm.
Then, the root node was split into child notes based on the given condition. The right child
node in the above figure fulfilled the condition, so no more questions were asked.
The left child node didn’t fulfil the condition, so again it was split based on a new condition.
This process continues till all the conditions are met or if you have predefined the depth of
your tree, e.g. the depth of our tree is 3, and it reached there when all the conditions were
exhausted.

Let’s see how the parent nodes and condition is chosen for the splitting to work.

Decision Tree for Regression

When performing regression with a decision tree, we try to divide the given values of X into distinct
and non-overlapping regions, e.g. for a set of possible values X1, X2,..., Xp; we will try to divide
them into J distinct and non-overlapping regions R1, R2, . . . , RJ. For a given observation falling
into the region Rj, the prediction is equal to the mean of the response(y) values for each training
observations(x) in the region Rj. The regions R1,R2, . . . , RJ are selected in a way to reduce the
following sum of squares of residuals :
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Where, yrj (second term) is the mean of all the response variables in the region ‘j’.

Recursive binary splitting(Greedy approach)

As mentioned above, we try to divide the X values into j regions, but it is very expensive in terms of
computational time to try to fit every set of X values into j regions. Thus, decision tree opts for a
top-down greedy approach in which nodes are divided into two regions based on the given
condition, i.e. not every node will be split but the ones which satisfy the condition are split into two
branches. It is called greedy because it does the best split at a given step at that point of time
rather than looking for splitting a step for a better tree in upcoming steps. It decides a threshold
value(say s) to divide the observations into different regions(j) such that the RSS for Xj>= s and Xj
<s is minimum.

Here for the above equation, j and s are found such that this equation has the minimum value. The
regions R1, R2 are selected based on that value of s and j such that the equation above has the
minimum value. Similarly, more regions are split out of the regions created above based on some
condition with the same logic. This continues until a stopping criterion (predefined) is achieved.
Once all the regions are split, the prediction is made based on the mean of observations in that
region.

The process mentioned above has a high chance of overfitting the training data as it will be very
complex.
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Tree Pruning

Tree pruning is the method of trimming down a full tree (obtained through the above process) to
reduce the complexity and variance in the data. Just as we regularised linear regression, we can
also regularise the decision tree model by adding a new term.

Where, T is the subtree which is a subset of the full tree T0 And α is the non-negative tuning
parameter which penalises the MSE with an increase in tree length. By using cross-validation,
such values of α and T are selected for which our model gives the lowest test error rate. This is
how the decision tree regression model works. Let’s now see the working algorithm of doing
classification using a decision tree. Greedy Algorithm As per Hands-on machine learning book
“greedy algorithm greedily searches for an optimum split at the top level, then repeats the process
at each level. It does not check whether or not the split will lead to the lowest possible impurity
several levels down. A greedy algorithm often produces a reasonably good solution, but it is not
guaranteed to be the optimal solution.”
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Post-pruning

Post-pruning, also known as backward pruning, is the process where the decision tree is
generated first and then the non-significant branches are removed. Cross-validation set of data is
used to check the effect of pruning and tests whether expanding a node will make an improvement
or not. If any improvement is there then we continue by expanding that node else if there is
reduction in accuracy then the node not be expanded and should be converted in a leaf node.

Pre-pruning

Pre-pruning, also known as forward pruning, stops the non-significant branches from generating. It
uses a condition to decide when should it terminate splitting of some of the branches prematurely
as the tree is generated.

Classification Trees
Regression trees are used for quantitative data. In the case of qualitative data or categorical data,
we use classification trees. In regression trees, we split the nodes based on RSS criteria, but in
classification, it is done using classification error rate, Gini impurity and entropy. Let’s understand
these terms in detail.
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Information Gain

Information gain calculates the decrease in entropy after splitting a node. It is the difference
between entropies before and after the split. The more the information gain, the more entropy is
removed.

Where, T is the parent node before split and X is the split node from T.

A tree which is splitted on basis of entropy and information gain value looks like:

Ginni Impurity

According to wikipedia, ‘Gini impurity is a measure of how often a randomly chosen element from
the set would be incorrectly labelled if it was randomly labelled according to the distribution of
labels in the subset.’ It is calculated by multiplying the probability that a given observation is
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classified into the correct class and sum of all the probabilities when that particular observation is
classified into the wrong class. Let’s suppose there are k number of classes and an observation
belongs to the class ‘i’, then Ginni impurity is given as:

Ginni impurity value lies between 0 and 1, 0 being no impurity and 1 denoting random distribution.
The node for which the Ginni impurity is least is selected as the root node to split.

A tree which is splitted on basis of ginni impurity value looks like:

Maths behind Decision Tree Classifier
Before we see the python implementation of decision tree. let's first understand the math behind
the decision tree classfication. We will see how all the above mentioned terms are used for
splitting.

We will use a simple dataset which contains information about students of different classes and
gender and see whether they stay in school's hostel or not.

This is how our data set looks like :



12/10/2020 Decision_tree

http://localhost:8888/notebooks/Decision_tree.ipynb 8/33

Let's try and understand how the root node is selected by calcualting gini impurity. We will use the
above mentioned data.

We have two features which we can use for nodes: "Class" and "Gender". We will calculate gini
impurity for each of the features and then select that feature which has least gini impurity.

Let's review the formula for calculating ginni impurity:

Let's start with class, we will try to gini impurity for all different values in "class".
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This is how our Decision tree node is selected by calculating gini impurity for each node
individually. If the number of feautures increases, then we just need to repeat the same steps after
the selection of the root node.

We will try and find the root nodes for the same dataset by calculating entropy and information
gain.

DataSet:

We have two features and we will try to choose the root node by calculating the information gain by
splitting each feature.

Let' review the formula for entropy and information gain:

Let's start with feature "class" :
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Let' see the information gain from feature "gender" :
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Different Algorithms for Decision Tree
ID3 (Iterative Dichotomiser) : It is one of the algorithms used to construct decision tree for
classification. It uses Information gain as the criteria for finding the root nodes and splitting
them. It only accepts categorical attributes.
C4.5 : It is an extension of ID3 algorithm, and better than ID3 as it deals both continuous and
discreet values.It is also used for classfication purposes.

Classfication and Regression Algorithm(CART) : It is the most popular algorithm used for
constructing decison trees. It uses ginni impurity as the default calculation for selecting root
nodes, however one can use "entropy" for criteria as well. This algorithm works on both
regression as well as classfication problems. We will use this algorithm in our pyhton
implementation.

Entropy and Ginni impurity can be used reversibly. It doesn't affects the result much. Although,
ginni is easier to compute than entropy, since entropy has a log term calculation. That's why CART
algorithm uses ginni as the default algorithm.

If we plot ginni vs entropy graph, we can see there is not much difference between them:
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Advantages of Decision Tree:

It can be used for both Regression and Classification problems.
Decision Trees are very easy to grasp as the rules of splitting is clearly mentioned.
Complex decision tree models are very simple when visualized. It can be understood just by
visualising.
Scaling and normalization are not needed.

Disadvantages of Decision Tree:

A small change in data can cause instability in the model because of the greedy approach.
Probability of overfitting is very high for Decision Trees.
It takes more time to train a decision tree model than other classification algorithms.

Cross-Validation
Suppose you train a model on a given dataset using any specific algorithm. You tried to find the
accuracy of the trained model using the same training data and found the accuracy to be 95% or
maybe even 100%. What does this mean? Is your model ready for prediction? The answer is no.
Why? Because your model has trained itself on the given data, i.e. it knows the data and it has
generalized over it very well. But when you try and predict over a new set of data, it’s most likely to
give you very bad accuracy, because it has never seen the data before and thus it fails to
generalizes well over it. This is the problem of overfitting. To tackle such problem, Cross-validation
comes into the picture. Cross-validation is a resampling technique with a basic idea of dividing the
training dataset into two parts i.e. train and test. On one part(train) you try to train the model and
on the second part(test) i.e. the data which is unseen for the model, you make the prediction and
check how well your model works on it. If the model works with good accuracy on your test data, it
means that the model has not overfitted the training data and can be trusted with the prediction,
whereas if it performs with bad accuracy then our model is not to be trusted and we need to tweak
our algorithm.
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Let’s see the different approaches of Cross-Validation:

Hold Out Method:

It is the most basic of the CV techniques. It simply divides the dataset into two sets of training and
test. The training dataset is used to train the model and then test data is fitted in the trained model
to make predictions. We check the accuracy and assess our model on that basis. This method is
used as it is computationally less costly. But the evaluation based on the Hold-out set can have a
high variance because it depends heavily on which data points end up in the training set and which
in test data. The evaluation will be different every time this division changes.

k-fold Cross-Validation

img_src:Wikipedia

To tackle the high variance of Hold-out method, the k-fold method is used. The idea is simple,
divide the whole dataset into ‘k’ sets preferably of equal sizes. Then the first set is selected as the
test set and the rest ‘k-1’ sets are used to train the data. Error is calculated for this particular
dataset. Then the steps are repeated, i.e. the second set is selected as the test data, and the
remaining ‘k-1’ sets are used as the training data. Again, the error is calculated. Similarly, the
process continues for ‘k’ times. In the end, the CV error is given as the mean of the total errors
calculated individually, mathematically given as:

The variance in error decreases with the increase in ‘k’. The disadvantage of k-fold cv is that it is
computationally expensive as the algorithm runs from scratch for ‘k’ times.

Leave One Out Cross Validation (LOOCV)
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LOOCV is a special case of k-fold CV, where k becomes equal to n (number of observations). So
instead of creating two subsets, it selects a single observation as a test data and rest of data as
the training data. The error is calculated for this test observations. Now, the second observation is
selected as test data, and the rest of the data is used as the training set. Again, the error is
calculated for this particular test observation. This process continues ‘n’ times and in the end, CV
error is calculated as:

Bias Variance tradeoff for k-fold CV, LOOCV and Holdout Set CV
There is a very good explanation given in the ISLR Book as given below:

A k-fold CV with k < n has a computational advantage to LOOCV. But putting computational issues
aside, a less obvious but potentially more important advantage of k-fold CV is that it often gives
more accurate estimates of the test error rate than does LOOCV. The validation set approach can
lead to overestimates of the test error rate since in this approach the the training set used to fit the
statistical learning method contains only half the observations of the entire data set. Using this
logic, it is not hard to see that LOOCV will give approximately unbiased estimates of the test error
since each training set contains n − 1 observations, which is almost as many as the number of
observations in the full data set. And performing k-fold CV for, say, k = 5 or k = 10 will lead to an
intermediate level of bias since each training set contains (k − 1)n/k observations—fewer than in
the LOOCV approach, but substantially more than in the validation set approach. Therefore, from
the perspective of bias reduction, it is clear that LOOCV is to be preferred to k-fold CV. However,
we know that bias is not the only source for concern in an estimating procedure; we must also
consider the procedure’s variance. It turns out that LOOCV has higher variance than does k-fold
CV with k < n. Why is this the case? When we perform LOOCV, we are in effect averaging the
outputs of n fitted models, each of which is trained on an almost identical set of observations;
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therefore, these outputs are highly (positively) correlated with each other. In contrast, when we
perform k-fold CV with k < n, we are averaging the outputs of k fitted models that are somewhat
less correlated with each other since the overlap between the training sets in each model is
smaller. Since the mean of many highly correlated quantities has higher variance than does the
mean of many quantities that are not as highly correlated, the test error estimate resulting from
LOOCV tends to have higher variance than does the test error estimate resulting from k-fold CV.

Implementation in Python
we will use Sklearn module to implement decision tree algorithm. Sklearn uses CART
(classification and Regression trees) algorithm and by default it uses Gini impurity as a criteria to
split the nodes.

There are other algorithms like ID3, C4.5, Chi-square etc.

We will see the use of CART in following implementation.

In [12]: import pandas as pd
import graphviz
from sklearn.tree import DecisionTreeClassifier, export_graphviz
from sklearn import tree
from sklearn.model_selection import train_test_split,GridSearchCV
from sklearn.preprocessing import StandardScaler
from sklearn.metrics import accuracy_score, confusion_matrix, roc_curve, roc_auc_
from sklearn.externals.six import StringIO  
from IPython.display import Image  
from sklearn.tree import export_graphviz
import pydotplus
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In [4]:

The data set consists following Input variables : 1 - fixed acidity 2 - volatile acidity 3 - citric acid 4 -
residual sugar 5 - chlorides 6 - free sulfur dioxide

7 - total sulfur dioxide 8 - density 9 - pH 10 - sulphates 11 - alcohol

and the Output variable gives the quality of th wine based on the input variables:

12 - quality (score between 0 and 10)

In [103]:

Out[4]:
fixed

acidity
volatile
acidity

citric
acid

residual
sugar chlorides

free
sulfur

dioxide

total
sulfur

dioxide
density pH sulphates alcoh

0 7.4 0.700 0.00 1.9 0.076 11.0 34.0 0.99780 3.51 0.56 9

1 7.8 0.880 0.00 2.6 0.098 25.0 67.0 0.99680 3.20 0.68 9

2 7.8 0.760 0.04 2.3 0.092 15.0 54.0 0.99700 3.26 0.65 9

3 11.2 0.280 0.56 1.9 0.075 17.0 60.0 0.99800 3.16 0.58 9

4 7.4 0.700 0.00 1.9 0.076 11.0 34.0 0.99780 3.51 0.56 9

... ... ... ... ... ... ... ... ... ... ...

1594 6.2 0.600 0.08 2.0 0.090 32.0 44.0 0.99490 3.45 0.58 10

1595 5.9 0.550 0.10 2.2 0.062 39.0 51.0 0.99512 3.52 0.76 11

1596 6.3 0.510 0.13 2.3 0.076 29.0 40.0 0.99574 3.42 0.75 11

1597 5.9 0.645 0.12 2.0 0.075 32.0 44.0 0.99547 3.57 0.71 10

1598 6.0 0.310 0.47 3.6 0.067 18.0 42.0 0.99549 3.39 0.66 11

1599 rows × 12 columns

Out[103]:
fixed acidity volatile

acidity citric acid residual
sugar chlorides free sulfur

dioxide
total sulfur

dioxide

count 1599.000000 1599.000000 1599.000000 1599.000000 1599.000000 1599.000000 1599.000000

mean 8.319637 0.527821 0.270976 2.538806 0.087467 15.874922 46.467792

std 1.741096 0.179060 0.194801 1.409928 0.047065 10.460157 32.895324

min 4.600000 0.120000 0.000000 0.900000 0.012000 1.000000 6.000000

25% 7.100000 0.390000 0.090000 1.900000 0.070000 7.000000 22.000000

50% 7.900000 0.520000 0.260000 2.200000 0.079000 14.000000 38.000000

75% 9.200000 0.640000 0.420000 2.600000 0.090000 21.000000 62.000000

max 15.900000 1.580000 1.000000 15.500000 0.611000 72.000000 289.000000

data = pd.read_csv("winequality_red.csv")
data

data.describe()
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We can see there is no missing data in the columns. Great!!

In [118]:

In [6]:

In [238]:

In [340]:

In [141]:

Let's understand the above tree:

Out[238]: DecisionTreeClassifier(class_weight=None, criterion='gini', max_depth=None, 
                       max_features=None, max_leaf_nodes=None, 
                       min_impurity_decrease=0.0, min_impurity_split=None, 
                       min_samples_leaf=1, min_samples_split=2, 
                       min_weight_fraction_leaf=0.0, presort=False, 
                       random_state=None, splitter='best')

Out[340]: ['fixed acidity', 
 'volatile acidity', 
 'citric acid', 
 'residual sugar', 
 'chlorides', 
 'free sulfur dioxide', 
 'total sulfur dioxide', 
 'density', 
 'pH', 
 'sulphates', 
 'alcohol']

Out[141]:

X = data.drop(columns = 'quality')
y = data['quality']

x_train,x_test,y_train,y_test = train_test_split(X,y,test_size = 0.30, random_sta

#let's first visualize the tree on the data without doing any pre processing
clf = DecisionTreeClassifier()
clf.fit(x_train,y_train)

feature_name=list(X.columns)
class_name = list(y_train.unique())
feature_name

# create a dot_file which stores the tree structure
dot_data = export_graphviz(clf,feature_names = feature_name,rounded = True,filled
# Draw graph
graph = pydotplus.graph_from_dot_data(dot_data)  
graph.write_png("myTree.png")
# Show graph
Image(graph.create_png())
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the first value indicates the column and the condition on which the root node was selected and
further will be splitted
the second value gives the gini impurity of the selected node
samples gives the number of observations at that point of time present in the node
value within the square brackets represents number of observations present in each
class(output) i.e. in the above given figure, 8 observations are in class 1, 38 in class 2 , 468 in
class 3 and so on.

Then the split was made on the basis of given condition.

In [239]:

In [240]:

In [241]:

Now we haven't done any prerocessing with our data and neither done any hyper parameter
tunings.Let's do all those and see how our score improves.

What are hyper parameters?

We can see above the decision tree classifier algorithm takes all those parameters which are also
known as hyperparameters.

Let's see the most important ones of the parameters(as per sklearn documentation) :

Parameters

criterion : string, optional (default="gini")

Out[239]: 1.0

Out[241]: 0.5791666666666667

clf.score(x_train,y_train)

py_pred = clf.predict(x_test)

# accuracy of our classification tree
clf.score(x_test,y_test)
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The function to measure the quality of a split. Supported criteria a
re 
"gini" for the Gini impurity and "entropy" for the information gain.

splitter : string, optional (default="best") The strategy used to choose the split at each node.
Supported strategies are "best" to choose the best split and "random" to choose the best
random split.
max_depth : int or None, optional (default=None) The maximum depth of the tree. If None,
then nodes are expanded until all leaves are pure or until all leaves contain less than
min_samples_split samples.
min_samples_split : int, float, optional (default=2) The minimum number of samples required
to split an internal node:

If int, then consider min_samples_split  as the minimum number.
If float, then min_samples_split  is a fraction and ceil(min_samples_split * 
n_samples)  are the minimum number of samples for each split.

.. versionchanged:: 0.18 Added float values for fractions.
min_samples_leaf : int, float, optional (default=1) The minimum number of samples required to
be at a leaf node. A split point at any depth will only be considered if it leaves at least 
min_samples_leaf  training samples in each of the left and right branches. This may have

the effect of smoothing the model, especially in regression.
If int, then consider min_samples_leaf  as the minimum number.
If float, then min_samples_leaf  is a fraction and ceil(min_samples_leaf * 
n_samples)  are the minimum number of samples for each node.

max_features : int, float, string or None, optional (default=None) The number of features to
consider when looking for the best split:

  - If int, then consider `max_features` features at each split. 
  - If float, then `max_features` is a fraction and 
    `int(max_features * n_features)` features are considered at eac
h 
    split. 
  - If "auto", then `max_features=sqrt(n_features)`. 
  - If "sqrt", then `max_features=sqrt(n_features)`. 
  - If "log2", then `max_features=log2(n_features)`. 
  - If None, then `max_features=n_features`.

Note: the search for a split does not stop until at least one valid partition of the node samples
is found, even if it requires to effectively inspect more than max_features  features.
random_state : int, RandomState instance or None, optional (default=None) If int,
random_state is the seed used by the random number generator; If RandomState instance,
random_state is the random number generator; If None, the random number generator is the
RandomState instance used by np.random .
max_leaf_nodes : int or None, optional (default=None) Grow a tree with max_leaf_nodes  in
best-first fashion. Best nodes are defined as relative reduction in impurity. If None then
unlimited number of leaf nodes.
min_impurity_decrease : float, optional (default=0.) A node will be split if this split induces a
decrease of the impurity greater than or equal to this value.
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min_impurity_split : float, (default=1e-7) Threshold for early stopping in tree growth. A node
will split if its impurity is above the threshold, otherwise it is a leaf.
class_weight : dict, list of dicts, "balanced" or None, default=None Weights associated with
classes in the form {class_label: weight} . If not given, all classes are supposed to have
weight one. For multi-output problems, a list of dicts can be provided in the same order as the
columns of y.
presort : bool, optional (default=False)

Whether to presort the data to speed up the finding of best splits i
n 
fitting. For the default settings of a decision tree on large 
datasets, setting this to true may slow down the training process. 
When using either a smaller dataset or a restricted depth, this may 
speed up the training.

When we do hyperparameter tuning, we basically try to find those sets and values of
hyperparameters which will give us a model with maximum accuracy. Let's go ahead and try to
improve our model.

We will start with scaling our data.

In [121]:

In [242]:

Although our dataset is realtively small, let's use PCA for feature selection and see if it improves
our accuracy.

scalar = StandardScaler()
 
x_transform = scalar.fit_transform(X)

x_train,x_test,y_train,y_test = train_test_split(x_transform,y,test_size = 0.30, 
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In [160]:

We can see that around 95% of the variance is being explained by 8 components. So instead of
giving all 11 columns as input in our algorithm let's use these 8 principal components instead.

In [170]:

from sklearn.decomposition import PCA
import numpy as np
pca = PCA()
principalComponents = pca.fit_transform(x_transform)
plt.figure()
plt.plot(np.cumsum(pca.explained_variance_ratio_))
plt.xlabel('Number of Components')
plt.ylabel('Variance (%)') #for each component
plt.title('Explained Variance')
plt.show()

pca = PCA(n_components=8)
new_data = pca.fit_transform(x_transform)
 
principal_x = pd.DataFrame(new_data,columns=['PC-1','PC-2','PC-3','PC-4','PC-5',
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In [171]:

In [246]:

There is a little increase in our test accuracy. Great!!

Let's now try to tune some hyperparameters using the GridSearchCV algorithm. We have studied
about CrossValidation in upcoming lecture.

GridSearchCV is a method used to tune our hyperparameters. We can pass different values of
hyperparameters as parameters for grid search. It does a exhaustive generation of combination of
different parameters passed. Using cross validation score, Grid Search returns the combination of
hyperparameters for which the model is performing the best.

In [327]:

Out[171]: PC-1 PC-2 PC-3 PC-4 PC-5 PC-6 PC-7 PC-8

0 -1.619530 0.450950 -1.774454 0.043740 0.067014 -0.913921 -0.161043 -0.282258

1 -0.799170 1.856553 -0.911690 0.548066 -0.018392 0.929714 -1.009829 0.762587

2 -0.748479 0.882039 -1.171394 0.411021 -0.043531 0.401473 -0.539553 0.597946

3 2.357673 -0.269976 0.243489 -0.928450 -1.499149 -0.131017 0.344290 -0.455375

4 -1.619530 0.450950 -1.774454 0.043740 0.067014 -0.913921 -0.161043 -0.282258

... ... ... ... ... ... ... ... ...

1594 -2.150500 0.814286 0.617063 0.407687 -0.240936 0.054835 0.170812 -0.355866

1595 -2.214496 0.893101 1.807402 0.414003 0.119592 -0.674711 -0.607970 -0.247640

1596 -1.456129 0.311746 1.124239 0.491877 0.193716 -0.506410 -0.231082 0.079382

1597 -2.270518 0.979791 0.627965 0.639770 0.067735 -0.860408 -0.321487 -0.468876

1598 -0.426975 -0.536690 1.628955 -0.391716 0.450482 -0.496154 1.189132 0.042176

1599 rows × 8 columns

Out[246]: 0.58125

principal_x

# let's see how well our model perform on this new data
x_train,x_test,y_train,y_test = train_test_split(principal_x,y,test_size = 0.30, 
#let's first visualize the tree on the data without doing any pre processing
clf = DecisionTreeClassifier()
clf.fit(x_train,y_train)
clf.score(x_test,y_test)

# we are tuning three hyperparameters right now, we are passing the different val
grid_param = {
    'criterion': ['gini', 'entropy'],
    'max_depth' : range(2,32,1),
    'min_samples_leaf' : range(1,10,1),
    'min_samples_split': range(2,10,1),
    'splitter' : ['best', 'random']
    
}
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In [328]:

In [330]:

In [331]:

In [332]:

C:\Users\user\Anaconda3\lib\site-packages\sklearn\model_selection\_search.py:81
4: DeprecationWarning: The default of the `iid` parameter will change from True 
to False in version 0.22 and will be removed in 0.24. This will change numeric 
results when test-set sizes are unequal. 
 DeprecationWarning) 

Out[330]: GridSearchCV(cv=5, error_score='raise-deprecating', 
            estimator=DecisionTreeClassifier(class_weight=None, 
                                             criterion='entropy', max_depth=1
6, 
                                             max_features=None, 
                                             max_leaf_nodes=None, 
                                             min_impurity_decrease=0.0, 
                                             min_impurity_split=None, 
                                             min_samples_leaf=1, 
                                             min_samples_split=2, 
                                             min_weight_fraction_leaf=0.0, 
                                             presort=False, random_state=None, 
                                             splitter='best'), 
            iid='warn', n_jobs=-1, 
            param_grid={'criterion': ['gini', 'entropy'], 
                        'max_depth': range(2, 32), 
                        'min_samples_leaf': range(1, 10), 
                        'min_samples_split': range(2, 10), 
                        'splitter': ['best', 'random']}, 
            pre_dispatch='2*n_jobs', refit=True, return_train_score=False, 
            scoring=None, verbose=0)

{'criterion': 'entropy', 'max_depth': 24, 'min_samples_leaf': 1, 'min_samples_s
plit': 2, 'splitter': 'random'} 

Out[332]: 0.5933869526362824

grid_search = GridSearchCV(estimator=clf,
                     param_grid=grid_param,
                     cv=5,
                    n_jobs =-1)

grid_search.fit(x_train,y_train)

best_parameters = grid_search.best_params_
print(best_parameters)

grid_search.best_score_
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In [334]:

In [335]:

Great!! Our test score has improved after using Gridsearch.

Note : we must understand that giving all the hyperparameters in the gridSearch doesn't gurantee
the best result. We have to do hit and trial with parameters to get the perfect score.

You are welcome to try tweaking the parameters more and try an improve the accuracy more.

Let's visualize the tree:

In [336]:

In [ ]:

Cloud Deployment (Heroku)

Out[334]: DecisionTreeClassifier(class_weight=None, criterion='entropy', max_depth=24, 
                       max_features=None, max_leaf_nodes=None, 
                       min_impurity_decrease=0.0, min_impurity_split=None, 
                       min_samples_leaf=1, min_samples_split=2, 
                       min_weight_fraction_leaf=0.0, presort=False, 
                       random_state=None, splitter='random')

Out[335]: 0.6041666666666666

Out[336]:

clf = DecisionTreeClassifier(criterion = 'entropy', max_depth =24, min_samples_le
clf.fit(x_train,y_train)

clf.score(x_test,y_test)

feature_name=list(X.columns)
class_name = list(y_train.unique())
# create a dot_file which stores the tree structure
dot_data = export_graphviz(clf,rounded = True,filled = True)
# Draw graph
graph = pydotplus.graph_from_dot_data(dot_data)  
#graph.write_png("tree.png")
# Show graph
Image(graph.create_png())

# let's save the model
import pickle
 
with open('C://Users//user/iNeuron/Decision tree'+ '/modelForPrediction.sav', 'wb
    pickle.dump(clf,f)
    
with open('C://Users//user/iNeuron/Decision tree'+ '/standardScalar.sav', 'wb') a
    pickle.dump(scalar,f)
 
with open('C://Users//user/iNeuron/Decision tree'+ '/pca_model.sav', 'wb') as f:
    pickle.dump(pca,f)
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Once the training is completed, we need to expose the trained model as an API for the user to
consume it. For prediction, the saved model is loaded first and then the predictions are made using
it. If the web app works fine, the same app is deployed to the cloud platform. The application flow
for cloud deployment looks like:

Pre-requisites for cloud deployment:
Basic knowledge of flask framework.
Any Python IDE installed(we are using PyCharm).
A Heroku account.
Basic understanding of HTML.

Steps before cloud deployment:
We need to change our code a bit so that it works unhindered on the cloud, as well.

Add a file called ‘gitignore’ inside the project folder. This folder contains the list of the files
which we don’t want to include in the git repository. My gitignore file looks like:
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.idea

As I am using PyCharm as an IDE, and it’s provided by the Intellij Idea community, it automatically
adds the .idea folder containing some metadata. We need not include them in our cloud app.

Add a file called ‘Procfile’ inside the ‘reviewScrapper’ folder. This folder contains the command
to run the flask application once deployed on the server:

web: gunicorn app:app

Here, the keyword ‘web’ specifies that the application is a web application. And the part ‘app:app’
instructs the program to look for a flask application called ‘app’ inside the ‘app.py’ file. Gunicorn is
a Web Server Gateway Interface (WSGI) HTTP server for Python.

Open a command prompt window and navigate to your ‘reviewScrapper’ folder. Enter the
command ‘pip freeze > requirements.txt’. This command generates the ‘requirements.txt’ file

The requirements.txt helps the Heroku cloud app to install all the dependencies before starting the
webserver.

After performing all the above steps the project structure will look like:

#

Deployment to Heroku:
After installing the Heroku CLI, Open a command prompt window and navigate to your project
folder.
Type the command heroku login to login to your heroku account.
After logging in to Heroku, enter the command heroku create to create a heroku app. It will
give you the URL of your Heroku app after successful creation. Or alternatively, you can go to
the heroku website and create an app directly.
Before deploying the code to the Heroku cloud, we need to commit the changes to the git
repository.
Type the command git init to initialize a local git repository.
Enter the command git status to see the uncommitted changes.
Enter the command git add . to add the uncommitted changes to the local repository.
Enter the command git commit -am "make it better" to commit the changes to the local
repository.
Enter the command git push heroku master to push the code to the heroku cloud.
After deployment, heroku gives you the URL to hit the web API.
Once your application is deployed successfully, enter the command heroku logs --tail to see
the logs.
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All the code is available in iNeuron git repo.

In [ ]:  


