
eXtreme Gradient Boosting
(XGBoost)
Prepared and Presented

by

Prabakaran Chandran

22 Oct 2020

Thursday Learning Hour

Story Begins here:

Meet Mr. Bert , works as CEO of Namma Bengaluru Metro Water
Corporation

He wants to estimate the Drinking water demand based on Population
Density , so that he can plan water supply schemes

Bert has:
• Historic Dataset of Areas,

Population density ,
Water supply

Bert has tried :
• A Decision Tree algorithm
• But not optimal results

Bert wants:
• To implement and learn

about XGBoost

Learning starts here:

What’s the problem with the Single Predictor (say Decision tree , Linear Regression)

• High bias ,High Variance (Remember Bias Variance trade off)
• High bias is the problem in Decision tree
• Low performance on new data

Ok , then
train multiple
models? Will

it work?

We can train multiple models instead of single models in
parallel or sequential

Terminology alert: Ensemble Learning.
1.Bagging , 2. Boosting , 3. Stacking , 4. Blending.

Journey for the Day : Boosting --> Gradient Boosting --> Extreme Gradient Boosting

Ensemble learning:
Populatio
n Density
(K)

Subblock Block Water
Demand
K.liters

1.6 Urban A 350

1.6 Urban B 400

1.5 Rural B 260

1.4 Rural A 100

Train

How? We have multiple ways --

Now, we have multiple
learners , how can we
train and test?

Bert might think this is
a forest

Bootstraps

Bootstrap-----------------Training

Test

Test

Test

Y1= 200

Y3 = 200

Y2 = 150

D1

D2

D3

Here we have a strong
predictor
Aggregate

Maximum Votes for
classification for our case -

Regression Averaging

Terminology Alert:

Bootstrapped Aggregation
(Bagging)

Parallel Training
Example : Random Forest

Bootstraps : Sampling with Replacement

Weak
learners/
predictors

Test Data ={ Pop Dens:600 , No of Conn:230}

Training Data

If Bagging is Parallel , what about Boosting? Learn
from failures..

Math Alert:
(Optional)

Final function:

𝑭 𝒙 = ෍

𝑻=𝟎

𝒏

𝜶𝒉 ሶ𝒊 𝒙

𝛼 − 𝑙𝑒𝑎𝑟𝑛𝑖𝑛𝑔 𝑟𝑎𝑡𝑒 0 𝑡𝑜 1
to emphasize weak learners

Loss or error or objective

𝑱=෌
𝒊

𝒏
𝓛 𝒚𝒊, 𝒚𝒊

𝒑

𝑦𝑖 − 𝑎𝑐𝑡𝑢𝑎𝑙 ,
𝑦𝑖

𝑝
− 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑

Data

Start
train

Error
train

Error
train

ℎ1 𝑥 ℎ2 𝑥 ℎ3 𝑥

𝑦1
𝑦3𝑦2

Error
train

𝒕𝒐 𝒏𝒕𝒉 𝒕𝒓𝒆𝒆

Boosting:
• The idea of boosting is to train weak learners sequentially, each trying

to correct its predecessor.
• Error is being corrected by weights or gradients (based on type of

boosting)
• Ada Boost(mAdaBoost) , Gradient Boost { XGBoost , LGBoost,

CatBoost},BrownBoost, LogitBoost

Let’s add Gradient Descent to this? So ,Gradient
Descent + Boosting = Gradient Boosting

• We know , even Bert Knows main Objective of all the ML
algos is to reduce the Loss !

• One of the method is Gradient Descent ! Gradient : first
order derivative of Loss (Slop of the curve , defines direction
to minimal point)

• Let’s take a derivative of a loss : (Math Alert!)

• Loss = ½ (actual – predicted)2 :: ½ MSE

•
𝜕𝐿

𝜕𝑦𝑝
= − actual − predicted = −residual

• So Gradient Boosting fits models of this residual
instead of actuals.

Aim
there

Start
train

Base Learner *

𝒕𝒓𝒂𝒊𝒏 𝒕𝒐 𝒑𝒓𝒆𝒅𝒊𝒄𝒕 𝒓𝒆𝒔𝒊𝒅𝒖𝒂𝒍𝒊,𝒎

Strong Learner = (Base-learner o/p)+
(learning rate x predicted residual from tree1)+ ….

Get back to Bert’s problem:

Populatio
n
Density in
Ks

Sub Block Block Water
Deman
d
(actuals
)

Base
learner
output

Residua
ls from
base
learner

1.6 Rural A 350 278 72

1.6 Urban B 400 278 122

1.5 Rural B 260 278 -18

1.4 Urban A 100 278 -178

Remember the Gradient Boosting steps:
1. Initialize a constant value (Base learner)
2. 𝐹0 𝑥 = 278 { it is just a leaf of our DT}
3. Base learner will give 278 as output to all the 𝒙 𝒅𝒂𝒕𝒂 𝒑𝒐𝒊𝒏𝒕𝒔

Math alert!:
To select an initial constant value

𝑭𝟎 𝒙 = 𝒂𝒓𝒈 𝐦𝐢𝐧
𝜸

෍

𝒊

𝒏

𝓛 𝒚𝒊,𝜸

The above equation is nothing but Loss
only :

½(350− 𝜸)𝟐+ ½(400− 𝜸)𝟐 +
½(260− 𝜸)𝟐 +½(100− 𝜸)𝟐

By applying First order derivative to solve
argmin problem: we will get

𝜸 = 278 { average of actuals ,
approx.)

Build the first weak learner with X on residuals

𝒙 ∶ 𝑫𝒆𝒔𝒊𝒕𝒚,𝑪𝒐𝒏𝒏
𝒚 ∶ 𝒓𝒆𝒔𝒊𝒅𝒖𝒂𝒍𝒔

𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑 𝑟𝑒𝑠𝑖𝑑𝑢𝑎𝑙𝑠

Block == A

72-178

Subblock == RuralDensity <1.6 k

122 -18

Leaves are called as Terminal Regions - 𝑅𝑗𝑡ℎ 𝑙𝑒𝑎𝑓,𝑚𝑡ℎ 𝑡𝑟𝑒𝑒

Output at each leaf 𝜸=

𝒂𝒓𝒈 𝒎𝒊𝒏
𝜸

෍

𝑹 (𝒋,𝒎)

𝒏

𝓛 𝒚𝒊, (𝑭𝒎−𝟏 𝒙 + 𝜸)

If we simplify that as usual: Output at each
leaf 𝛾 = average of residuals at each leaf

Even if we have one residual at a leaf =
residual/1

We have built our base learner , let’s build a weak learner 1
𝒙 ∶ 𝑫𝒆𝒔𝒊𝒕𝒚,𝑪𝒐𝒏𝒏

𝒚 ∶ 𝒓𝒆𝒔𝒊𝒅𝒖𝒂𝒍𝒔 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑 𝑟𝑒𝑠𝑖𝑑𝑢𝑎𝑙𝑠

Root node

Branch node

Leaf node

Yes No

Yes No Yes No

Note :
• Here Trees are built based on CART Algorithm (CART to build Decision Trees)
• Algorithm follows Gini Index / Entropy (Impurity Indices), Information gain to structure the Decision trees (

Details omitted to avoid the confusion)
• Refer DT – CART algo for more info.

Block == A

72-178

Subblock == RuralDensity <1.6 k

122 -18

Leaves are called as Terminal Regions - 𝑅𝑗𝑡ℎ 𝑙𝑒𝑎𝑓,𝑚𝑡ℎ 𝑡𝑟𝑒𝑒

Output of weak learner 1

Yes No

Yes No Yes No

Population
Density in Ks

Sub Block Block Water Demand
(actuals)

Weak
Learner output
(predict.
res)

O.P =
278+(0.1*pred.res)

Residuals from
Weak learner 1
(to trainer wl 2)

1.6 Rural A 350 72 278+7.2=
285.2

64.8

1.6 Urban B 400 122 278.5+12.2=
290.2

109.8

1.5 Rural B 260 -18 278-1.8 =
276.2

-16.2

1.4 Urban A 100 -178 278-17.8=
260.2

-160.2

Inference:
1. Predicted Residuals move

towards zero
2. Predicted outputs move

towards actuals

Block == A

64.8-160.2

Subblock == RuralDensity <1.6 k

109.8 -16.2

Leaves are called as Terminal Regions - 𝑅𝑗𝑡ℎ 𝑙𝑒𝑎𝑓,𝑚𝑡ℎ 𝑡𝑟𝑒𝑒

Repeat until m= M., (that’s what ML does ☺)

Yes No

Yes No Yes No

Population
Density in Ks

Sub Block Block Water Demand
(actuals)

Weak
Learner2 output
(predict.
res)

O.P =
wl1_O.P+(0.1*pred.
res)

Residuals from
Weak learner 2
(to trainer wl 3)

1.6 Rural A 350 64.8 285.2+6.48=
291.7

59.3

1.6 Urban B 400 109.8 290.2+10.98=
301.12

98.88

1.5 Rural B 260 -16.2 276.2-1.62 =
274.58

-14.5

1.4 Urban A 100 -160.2 260.2-16.02=
244.18

-144.18

Inference:
1. Outputs and Residuals

movements are in correct direction
Term alert:

M is max number of
Trees/estimators default 100 in py

packages

Dummy Illustration:

eXtreme Gradient Boosting
a pro player in Kaggle Competitions

XGBoost: Execution and Features promote a
statistical methods to ML algorithm

• GBM + Regularization
• Boosted trees
• Structure evaluation

using similarity score

• Approximated Greedy
algorithm

• Weighted Quantile
Search

• Sparsity aware split
finding – missing
values handling

• Parallel Computation
• Taylor approx. to

reduce the
computation cost

• Bootstrapped training
for Larger datasets

• Cache aware
computation

• Blocks for out of core
computation

Now Bert is ready to learn XGBoost:
Usual Loss function:

σ𝑖
𝑛 ℒ 𝑦𝑖, 𝑝𝑖 ; 𝑤ℎ𝑒𝑟𝑒 𝑝𝑖 − 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑

Manuscript of XGBoost adds Regularization
parameters:

෍
𝒊

𝒏

𝓛 𝒚𝒊 , 𝒑𝒊 + 𝜸𝑻 + 𝟏/𝟐𝝀𝑶𝒗𝒂𝒍𝒖𝒆
𝟐 ;

where 𝛾 − 𝑝𝑟𝑢𝑛𝑖𝑛𝑔 𝑝𝑒𝑛𝑎𝑙𝑡𝑦 , 𝜆 −
𝑅𝑒𝑔𝑢𝑙𝑎𝑟𝑖𝑧𝑎𝑡𝑖𝑜𝑛 (𝑅𝑖𝑑𝑔𝑒)

• Let's add a regularization term to avoid
• Training Loss + Regularization

XGBoost uses second order Taylor
approximation to avoid complex computation

Optimal Output value :

𝑶𝒗𝒂𝒍𝒖𝒆 =
σ 𝒔𝒖𝒎 𝒐𝒇 𝒓𝒆𝒔𝒊𝒅𝒖𝒂𝒍𝒔

σ 𝒏𝒖𝒎𝒃𝒆𝒓 𝒐𝒇 𝒓𝒆𝒔𝒊𝒅𝒖𝒂𝒍𝒔+𝝀

𝒔𝒂𝒚 ∶ 𝝀 = 1

Block == A

72-178

Subblock == RuralDensity <1.6 k

122 -18

Leaves are called as Terminal Regions - 𝑅𝑗𝑡ℎ 𝑙𝑒𝑎𝑓,𝑚𝑡ℎ 𝑡𝑟𝑒𝑒

Yes No

Yes No Yes No

Penalty will give goodness in the future
Population
Density in Ks

Sub Block Block Water Demand
(actuals)

Weak
Learner output
(predict.
res)

O.P =
278+(0.1*pred.res)

Residuals from
Weak learner 1
(to trainer wl 2)

1.6 Rural A 350 72/2 = 36 278+3.6=
281.6

68.4

1.6 Urban B 400 122/2 =61 278+6.1=
264.1

235.9

1.5 Rural B 260 -18/2 =-9 278-0.9 =
278.9

--18.9

1.4 Urban A 100 -178/2 =-89 278-8.9=269.1 -169.1

Penalty term slows
down the residual's
movement , but will

help the model
better in future

• Note :
• Rest of the Actions are same as unextreme

Gradient boosting

• Penalty factor is just a hyper parameter , it
depends on the ML engineer to fix the value
and take the decision to use

XGBoost uses Similarity Score to evaluate structures
Block == A

122,-18-178, 72

Yes No

Yes No

Density <1.6 k

122,-18,72-178

Yes No

Tree 1:
Root similarity Score : 1
Left similarity score : 5618
Right similarity score : 5408
Gain = Left + Right- Root = 11025

Similarity score=
σ 𝒔𝒖𝒎 𝒐𝒇 𝒓𝒆𝒔𝒊𝒅𝒖𝒂𝒍𝒔 ,𝒔𝒒𝒖𝒂𝒓𝒆𝒅

σ 𝒏𝒖𝒎𝒃𝒆𝒓 𝒐𝒇 𝒓𝒆𝒔𝒊𝒅𝒖𝒂𝒍𝒔

Tree 2:
Root similarity Score : 1
Left similarity score : 31684
Right similarity score : 10325
Gain = Left + Right- Root = 42009

XG Boost uses Similarity score to evaluate the splits , which is faster than Gini/Entropy based one and it also linked
with Approximate Greedy algorithm

Tree2 is
having better
split.

Approximate Greedy algorithm reduces the Split
Evaluation number.
GBM checks the split quality for each and every
features and their data point , whereas in Approximated
Greedy algorithm uses Quantiles.

Its implemented when we have large datasets

Feature X

Y Y

Feature X

quantiles

Approximate Greedy
algorithm builds splits
only on Quantiles and
reduces the number of

thresholds and splits
evaluation

Speeds up the
computation

* Weighed Quantiles and
Sketch algorithms are also

being used

Consolidated Features of XGBoost

Thank you

Questions!

Appendix : Maths

Instead of direct 2nd order derivation , we can use Taylor
approx.:
−→ σ 𝓛 𝒚𝒊, 𝒑𝒊′ + 𝑶 𝒗𝒂𝒍𝒖𝒆 ≈ σ 𝓛 𝒚𝒊, 𝒑𝒊 ;

𝓛 𝒚𝒊, 𝒑𝒊 +
ⅆ

ⅆ𝒑𝒊
𝓛 𝒚𝒊, 𝒑𝒊 *𝑶𝒗𝒂𝒍𝒖𝒆+

ⅆ𝟐

ⅆ𝒑𝒊
𝓛 𝒚𝒊, 𝒑𝒊 * 𝑶𝒗𝒂𝒍𝒖𝒆

𝟐

• First order derivative of the loss is gradient –g

• Second order loss is hessian – h

• This improves the computation speed – no need to
perform differentiation

• Calculation of gradients and hessians taken place
in Cache memory – faster execution

So Optimal Output value :

𝑶𝒗𝒂𝒍𝒖𝒆 =
σ 𝒔𝒖𝒎 𝒐𝒇 𝒓𝒆𝒔𝒊𝒅𝒖𝒂𝒍𝒔

σ 𝒏𝒖𝒎𝒃𝒆𝒓 𝒐𝒇 𝒓𝒆𝒔𝒊𝒅𝒖𝒂𝒍𝒔

Boosting in Machine Learning:
• Boosting is a type of ensemble machine learning technique. predictors are not made independently, but

sequentially

Ensemble Learning :
• Single model can lead to High bias and High variance
• Multiple models (often called “weak learners”) are trained to solve the same problem and combined to get

better results
• Strong Learner = 𝛴 𝑤𝑒𝑎𝑘 𝑙𝑒𝑎𝑟𝑛𝑒𝑟𝑠 ; 𝛴 𝑑𝑒𝑛𝑜𝑡𝑒𝑠 𝑒𝑛𝑠𝑒𝑚𝑏𝑙𝑖𝑛𝑔 𝑎𝑐𝑡𝑖𝑜𝑛
• Bagging(Bootstrapped aggregation) , Boosting(Today’s topic) , Stacking and Blending(uses meta-models)

Boosting:
• The idea of boosting is to train weak

learners sequentially, each trying to
correct its predecessor.

• Error is being corrected by weights or
gradients (based on type of boosting)

• Ada Boost(mAdaBoost) , Gradient
Boost { XGBoost , LGBoost,
CatBoost},BrownBoost, LogitBoost

Boosting:

Data Set Weak Learner 1(Base learner) Weak Learner 2

Weak Learner 3Weak Learner n

𝐹 𝑥 = ෍

𝑇=0

𝑛

𝛼ℎ ሶ𝑖 𝑥

ℎ𝑖 𝑥 ℎ𝑖 𝑥

ℎ𝑖 𝑥ℎ𝑖 𝑥

Final Classifier/Regressor

ℒ 𝑦𝑖 ,ℎ𝑖 𝑥 ∶ 𝐿𝑜𝑠𝑠

Bring Previous Weak learner’s
loss to this one by
weights/residuals (varies
with type)

Repeat Loss Propagate

Repeat Loss Propagate

𝛼 − 𝑙𝑒𝑎𝑟𝑛𝑖𝑛𝑔 𝑟𝑎𝑡𝑒 (0 𝑡𝑜 1)

Strong Learner = (Base-learner)+ (learning rate x Weaklearner1)+ ….

Most of the Algos
use Decision tree
as a weak learner

Loss fucn will
differ for Reg and

Clasfn

Gradient Boosting: (Gradient Descent + Boosting) with
residuals
• Math and Example:

• Data : 𝑥𝑖 , 𝑦𝑖 : 𝑖 𝑡𝑜 𝑛 Weight has to be predicted (Regression problem)

Height Color Gender Weight

1.6 Blue Male 88

1.6 Green Female 76

1.5 Blue Female 56

1.4 Green Male 66

Our objective is to minimize the Loss function:

෌
𝑖

𝑛
ℒ 𝑦𝑖 , 𝑦𝑖

𝑝
→ 𝑦𝑖 − 𝑎𝑐𝑡𝑢𝑎𝑙 , 𝑦𝑖

𝑝
= 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑

Loss = ½ (actual – predicted)2 :: ½ MSE

½ is added to reduce the complexity while differentiating

When diff the Loss (Gradient descent Logic) :
𝜕𝐿

𝜕𝑦𝑝
= − actual − predicted = −residual

Let’s start Boosting

• A. Initialize a Model with constant value by following condition:𝑭𝟎 𝒙 = 𝒂𝒓𝒈 𝐦𝐢𝐧
𝜸

σ𝒊
𝒏 𝓛 𝒚𝒊, 𝜸

The above equation is nothing but Loss only : ½(88− 𝜸)𝟐+ ½(76− 𝜸)𝟐 + ½(56− 𝜸)𝟐 + ½(66− 𝜸)𝟐

By applying First order derivative to solve argmin problem: we will get 𝛾 = 71 { average of actuals)

We have our base model 𝐹0 𝑥 = 71
{ it is just a leaf of our DT}

For M trees m = 1 to M:
• Calculate the Residual to

build our first weak learner:
actual - 71

Height Color Gender Weight Weight – 71 𝒓𝒆𝒔𝒊𝒅𝒖𝒂𝒍𝒊,𝒎

1.6 Blue Male 88 88-71 17

1.6 Green Female 76 76-71 5

1.5 Blue Female 56 56-71 -15

1.4 Green Male 66 66-71 -5

Gradient boosting Completed:
Repeat: until m= Max no of tree

Gender = Female

4.5-13.5

Color != blueHeight<1.6

-4.5 15.3

Yes No

Leaves are called as Terminal Regions - 𝑅𝑗𝑡ℎ 𝑙𝑒𝑎𝑓,𝑚𝑡ℎ 𝑡𝑟𝑒𝑒

Heig
ht

Color Gende
r

Weig
ht

Leaf
output

71+ 0.1(leaf output) New Residuals

1.6 Blue Male 88 15.3 72.7+1.53 =74.23 13.77

1.6 Green Femal
e

76 4.5 71.5+0.45
=71.95

4.05

1.5 Blue Femal
e

56 -13.5 69.5-1.35
=68.15

-12.15

1.4 Green Male 66 -4.5 70.5-0.45 =70.05 --4.05

Note : Residuals are continuing their movement toward zero. Default GBM will have 100 trees ,
but we can control it by number of estimators M value.

• Calculate the output of the tree 1(predicted residual) consider learning rate = 0.1 , get new
output and residuals

Gender = Female

5-15

Color != blueHeight<1.6

-5 17

Yes No

cont.:

Leaves are called as Terminal Regions - 𝑅𝑗𝑡ℎ 𝑙𝑒𝑎𝑓,𝑚𝑡ℎ 𝑡𝑟𝑒𝑒

Hei
ght

Col
or

Gen
der

We
igh
t

Leaf
output

71+ 0.1(leaf
output)

New
Residuals

1.6 Blu
e

Mal
e

88 17 71+1.7 =
72.7

15.3

1.6 Gre
en

Fem
ale

76 5 71+0.5=71.5 4.5

1.5 Blu
e

Fem
ale

56 -15 71-1.5=69.5 -13.5

1.4 Gre
en

Mal
e

66 -5 71-0.5 =
70.5

-4.5

Note : Residuals have started their movement toward zero.

Strong Learner = (Base-learner)+ (learning rate x Weaklearner1)+ ….

