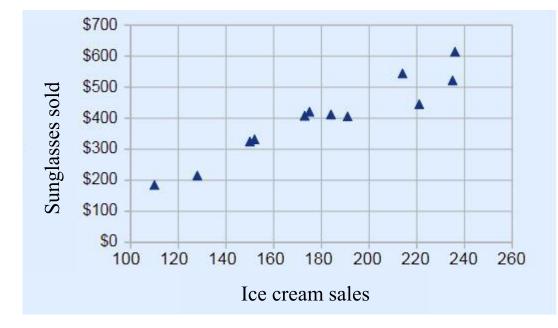


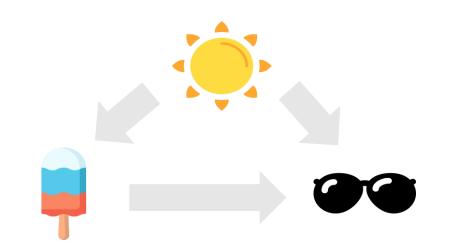
Introduction to Causality

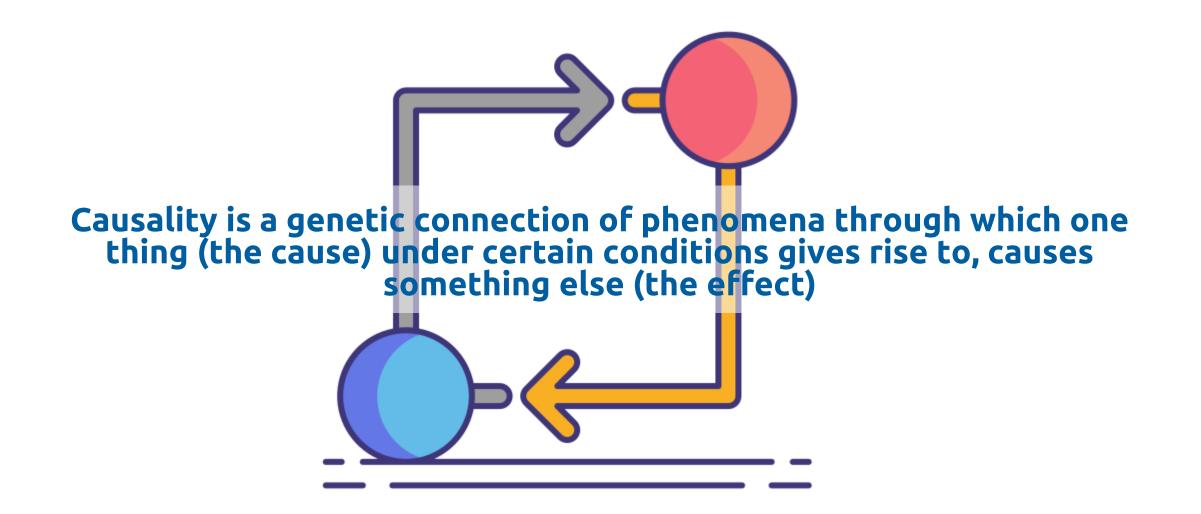
Animesh Danayak, Gayathri Anil 8 June 2020



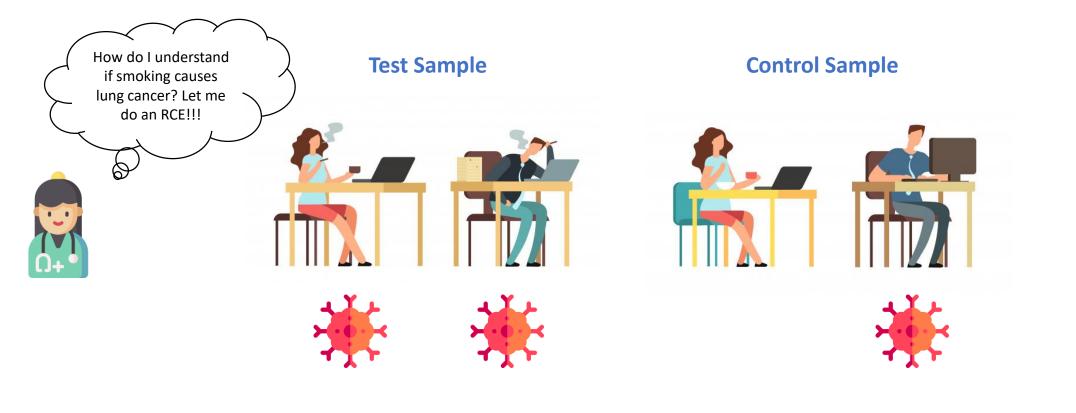
Does Correlation mean Causation?



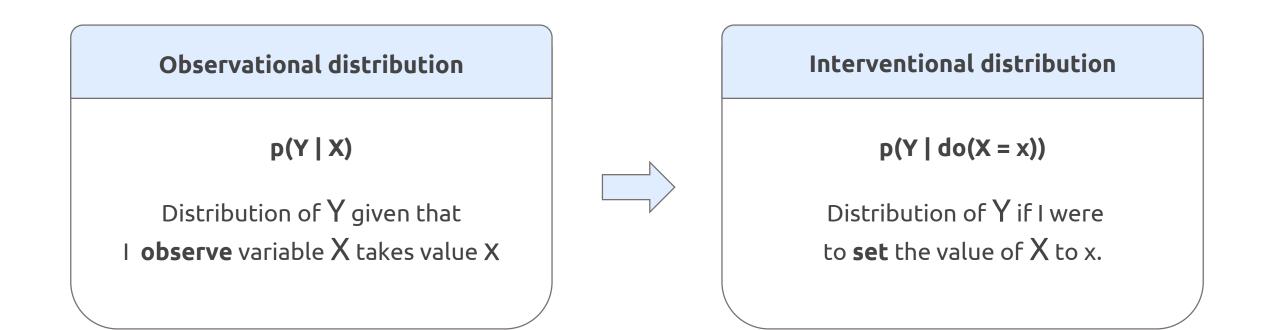




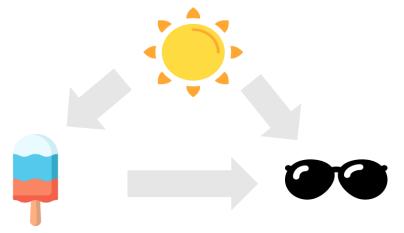
A causal relationship is determined via Randomized Controlled Experiments

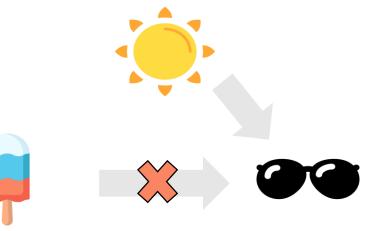


In situations where RCEs are expensive and not feasible, Do -Calculus becomes a data – driven proxy to identify causality

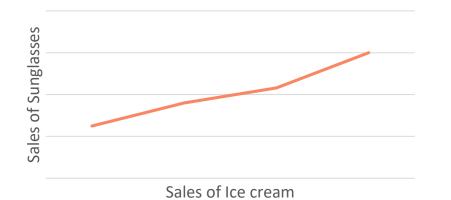


do–Calculus helps us discredit non-causal relationships in data





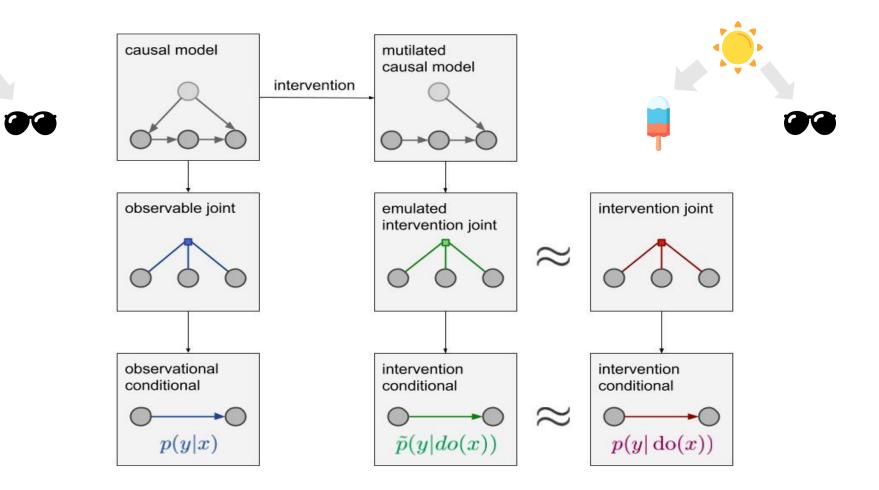
Observational Distribution



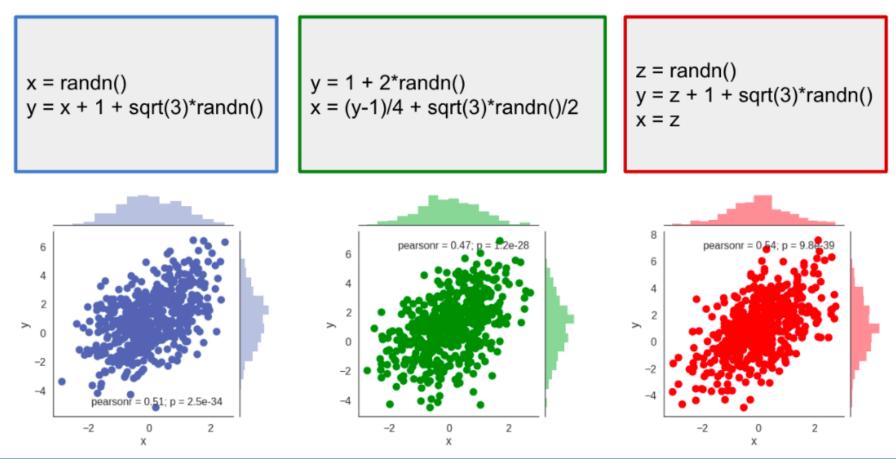
Interventional Distribution

Sales of Ice cream

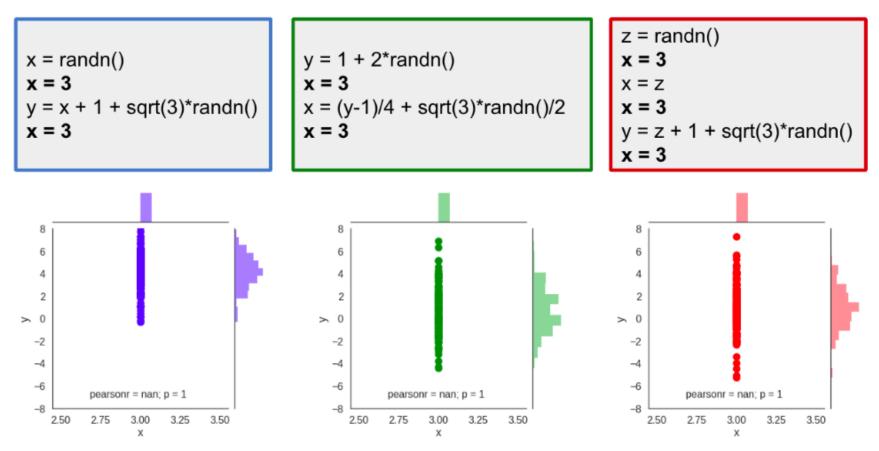
Moving from conventional ML models to causal models



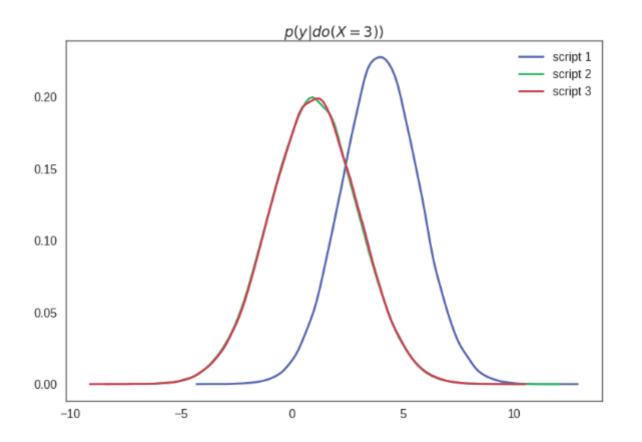
Three scripts:



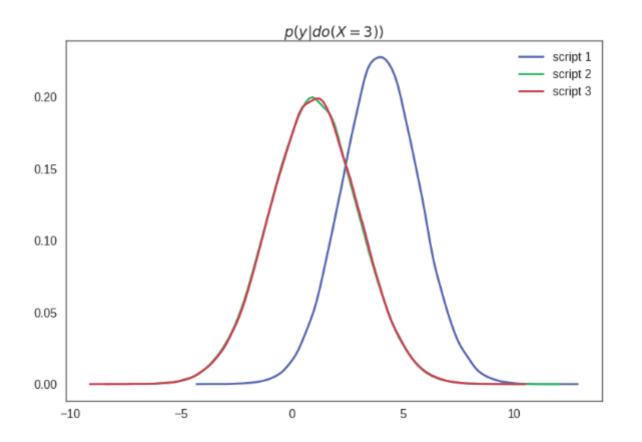
Interventions:



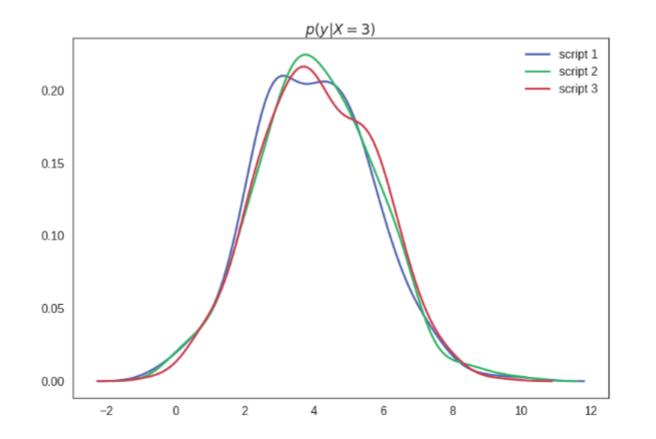
Result of this intervention:



Result of this intervention:

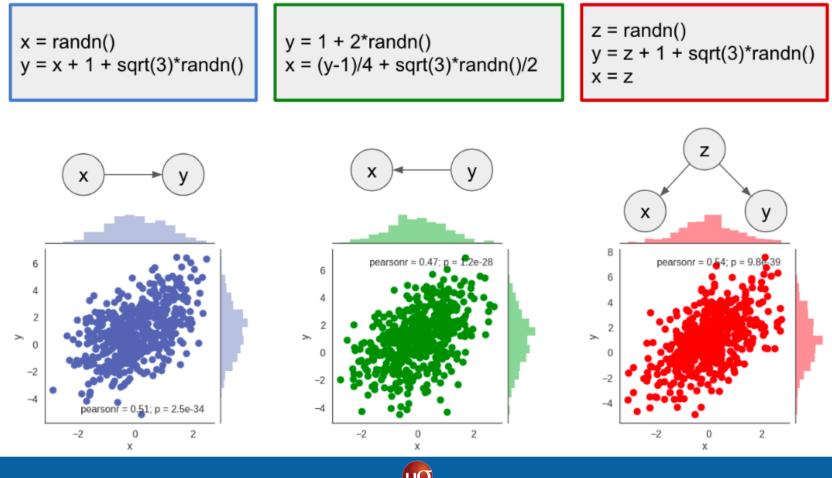


If the intervention was not made:

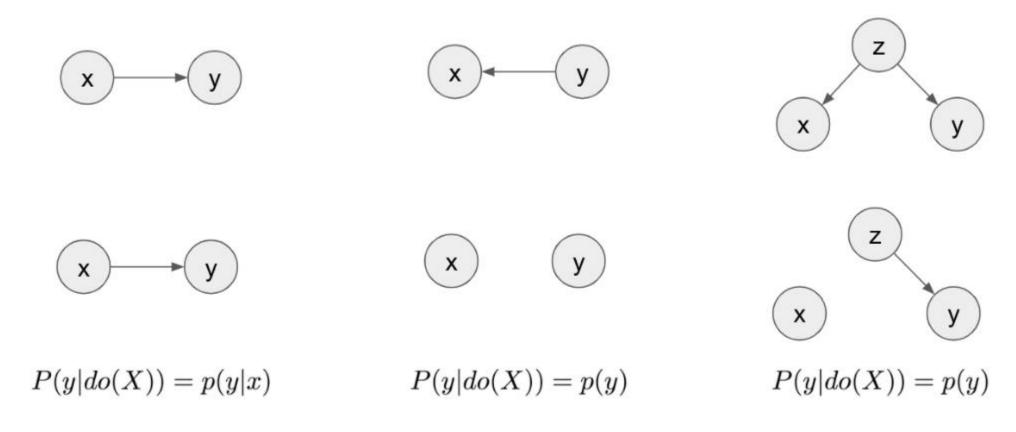


- Based on the Joint Distribution of data, the 3 scripts are INDISTINGUISHABLE.
- The scripts behave differently under INTERVENTION
- Consequently, Joint Distribution of data alone is insufficient to predict behaviors under an intervention.

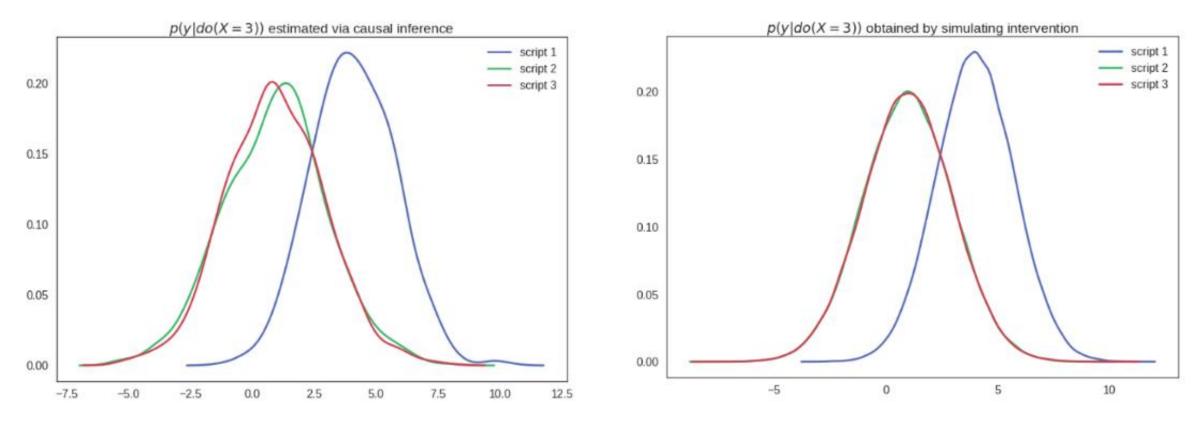
Causal Diagrams:



Causal Diagrams:



Estimated using Joint Dist. And Causal Diagram Running the experiment



- The causal diagram allows us to predict how the models will behave under intervention, without carrying out the intervention.
- We can estimate the distribution of **y** observed during the intervention experiment using only samples from the script under the normal (non-intervention) situation.
- This is called *Causal Inference* from observational data.

Introductory document to Causality

Causality brick

Thank you!

Appendix

References and EoC materials

References

- 8 pillars of Causal wisdom: https://ftp.cs.ucla.edu/pub/stat_ser/r470.pdf ٠
- Understanding Judea Pearl's do-calculus and interventions: https://www.inference.vc/untitled/#:~:text=Causal%20inference%20and%20do%2Dcalculus%20allows%20you%20to%20understand%20a,estim ٠ ate%20that%20thing%20from%20data.
- Example of how we can use Judea Pearl's do-calculus to prove conditional independence: https://medium.com/@akelleh/introducing-the-dosampler-for-causal-inference-a3296ea9e78d
- Paper to understand the math behind Judea Pearl's do-calculus: https://ftp.cs.ucla.edu/pub/stat_ser/r402.pdf ٠
- Rubin's idea of Causality: ٠
 - <u>https://stats.stackexchange.com/questions/178159/is-there-an-intuitive-way-to-understand-the-rubin-causal-model-and-the-potential</u> https://en.wikipedia.org/wiki/Rubin_causal_model
- Rubin Causal Model video https://www.youtube.com/watch?v=LrmrH26EhSo ٠
- Slides contrasting Pearl's vs Rubin's model http://leedokyun.com/obs.pdf ٠

EoC materials

- Introductory document to Causality and the brick: https://eoc.mu-sigma.com/search/app/tree/Foundation/?highlightId=af13e4dc-d257-4af6-a991-٠ 08f6d77231f0&expanded=false
- Causality brick: https://eoc.mu-sigma.com/search/app/tree/Foundation/?highlightId=9c0fc1c5-8151-4441-a6db-72f720fd28a1&expanded=false ٠

Assumptions of Causal Structure Learning

Causal sufficiency: Refers to the absence of latent variables. They can either be modeled explicitly as nodes in the structural equations, or they can manifest themselves as dependence between the noise terms (ϵ 1,..., ϵ p), where the noise terms are assumed to be independent in the absence of latent confounding variables.

Causal faithfulness: The distribution of X generated from structure causal model equation is Markov with respect to the causal DAG, meaning that if A and B are d-separated by S in the causal DAG, then X_A and X_B are conditionally independent given X_S . The reverse implication is called **causal faithfulness**.

Acyclicity: A graph is said to be acyclic if there is no presence of feedback mechanism.