Thursday Learning Hour

Reinforcement Learning

By Prabakaran Chandran

Agenda:

- An overview on Machine learning paradigm
- Conventional Machine learning vs Reinforcement learning
- Key Concepts of Reinforcement learning
- Foundation of RL Markov Family
- Components of RL
- Applications across domains

Machine learning: Conventional ML vs Reinforcement Learning

Machine learning : Supervised and Unsupervised

What happens in these Scenarios ?:

Consider a Person and his Journey in Data & Al Domain

Person has a set of skills to learn – Based on his Behavior the person selects the skill or saturation

Based on the skill / position the person stays , Industry gives him/her a Reward

To become successful in the industry, the person change his behavior - By learning and understanding

Here, I denote

- Person \rightarrow Agent
- Each skill / position \rightarrow State
- Data & AI industry \rightarrow Environment
- Probability \rightarrow Transition Probability
- Promotion , Failure \rightarrow Reward
- Scope of Each position \rightarrow value of the state
- Skill / Position transition behavior of the person → Policy
- What we need is optimal behavior / optimal policy to have more success in the environment

- How did I structure this process to capture these interactions ?
 - Markov Family Helped me (Lets dive into small math part)
- By selecting correct decisions / actions in each state , the person can build his optimal policy (optimal behavior) which can give him a great success
- This Selection cannot be achieved directly , its by error and trail (Learning) ---→ Reinforcement learning

Markov Family of Processes builds the RL environment

Space

Markov is nothing but Future state is depending on current state , not the History

State Space

Markov Property makes each state as memoryless

Markov Property \rightarrow Markov Process \rightarrow Markov Reward Process \rightarrow Markov Decision Process:

	A	В	C	D	E	F	G	H	Ι
А	0.2	0.1		0.7					
В	0.5	0.4	0.1						
С		0.4	0.2			0.4			
D	0.1			0.2	0.6		0.1		
Е		0.1		0.3	0.2	0.3		0.1	
F			0.1		0.1	0.1			0.6
G					0.6		0.2	0.2	
Н					0.1		0.1	0.1	0.7
Ι									

Possible State change (process / Chain)

Out of 81 transition probabilities , only 29 are Possible in this state space.

Markov Reward Process:

	А	В	С	D	E	F	G	н	I
Α	0.2	0.1		0.7					
В	0.5	0.4	0.1						
С		0.4	0.2			0.4			
D	0.1			0.2	0.6		0.1		
Е		0.1		0.3	0.2	0.3		0.1	
F			0.1		0.1	0.1			0.6
G					0.6		0.2	0.2	
н					0.1		0.1	0.1	0.7
Ι									

Possible State change
(process / Chain)Each Transition will have its own reward point , Reward point can
be positive or negative depends on their properties.
Each State can have a value , which is expected return by being in
the state.Discount factor
– to avoid
infinity and
significant to
Current State.Expected Return = Reward at the current state + d(Expected Return
of Previous state)Current State

- At A (B , Right) and A(D, down) are the possible actions
- JD can select any one of the action (Decision he has to take)

Possible Decisions by selecting the Actions at each state.

A B C D E F G M H M

This is what we Jeffery need to follow to have more reward.

He can take any Decision from the available action space, but there can be a negative reward too. This selection of action depends on Jeffery's Behavior (Policy) How can he learn this ??

By solving this MDP Enviornment

To reach the optimal policy : Strategy Making

Let's Define Policy :

- π ; $s \rightarrow Pr(A/s)$, where $s \in S$
- In simple word for each $s \rightarrow a$; $A \rightarrow down$, $B \rightarrow left$, $D \rightarrow right$
- π is the policy here.
- It's a mapping from states to the (probabilistically) best
- actions for those states.

Optimal policy : $\pi * = \arg \max E(R/\pi)$, the policy which gives more return

1. How Can we evaluate the Policies ? And select the Optimal one ?

Two Major Functions are used to Evaluate the Policies :

$$V^{\pi}(s) = E_{\pi}\{R_t | s_t = s\} = E_{\pi}\!\left\{\sum_{k=0}^{\infty} \gamma^k r_{t+k+1} \mid s_t = s\right\},\$$

$$Q^{\pi}(s,a) = E_{\pi}\{R_t | s_t = s, a_t = a\} = E_{\pi} \left\{ \sum_{k=0}^{\infty} \gamma^k r_{t+k+1} \mid s_t = s, a_t = a \right\}.$$

Road map to RL algorithms: (Classical RLs)

Applications:

Questions:

Appendix:

Deep RL and Other algorithms:

Classical RL process:

1. The value function denoted as v(s) under a policy π represents how good a state is for an agent to be in.

1. Evaluates the State and Action Pair → How good is to take a particular action in a state

Markov Property \rightarrow Markov Process \rightarrow Markov Reward Process \rightarrow Markov Decision Process:

