

**Decision Trees | Fundamentals and Implementation** 

Thursday Learning Hour – Dec 10,2020

Do The Math

Chicago, IL Bangalore, India www.mu-sigma.com

December 11, 2020

**Proprietary Information** 

"This document and its attachments are confidential. Any unauthorized copying, disclosure or distribution of the material is strictly forbidden"



F Pipeline of an ML Project







### **ML Introduction**







F Pipeline of an ML Project









Pipeline of an ML Project













Pipeline of an ML Project













- Applications
- Cross Validation Techniques

### **Decision Trees | Overview**



Divides whole dataset into Tree like structure for taking decisions

Done through Gini Index/ Information gain calculation





Pick a variable and condition to split into branches

#### Root node is split into Child Nodes

These are called branches, and it is done based on root variable values

#### Process is repeated till leaf nodes

Tree can be pruned as well to get desired level of output

#### In case of regression

 $\mathbf{0.3}$ 

The same process is done, but ChiSquare or Reduction in variance method is used





### **Decision Trees | Gini Index & Information Gain**



| Independent.<br>Variable | Independen<br>Variable | t. Target<br>Variable |
|--------------------------|------------------------|-----------------------|
| Class                    | Gender                 | Stay in hostel        |
| 9                        | M                      | Yes                   |
| 10                       | F                      | No                    |
| 8                        | F                      | Yes                   |
| 8                        | F                      | No                    |
| 9                        | M                      | Yes                   |
| 10                       | M                      | No                    |
| 11                       | F                      | Yes                   |
| 11                       | . M                    | Yes                   |
| 8                        | F                      | Yes                   |
| 9                        | M                      | No                    |
| 11                       | . M                    | No                    |
| 11                       | . M                    | Yes                   |
| 10                       | F                      | No                    |
| 10                       | м                      | Yes                   |





Pipeline of an ML Project













- **F** Applications
- Cross Validation Techniques

### **Applications**









goal

Eg-Online – Transactions, Urgency, Offline – Price, # Resources



Energy Consumption Important factors driving high/low use of energy Eg- Number of people, Type of household, Income



#### Identifying Bank Fraud

Based on historical data, frauds can be detected in an early stage



### Marketing Campaigns Identifying which audience to target

Identifying important parameters which drive a campaign goal



#### **Churn Prediction**

A very powerful and intuitive process to predict customer churn



#### Healthcare

To check what all factors lead to a specific disorder Eg – Symptoms deciding whether the tumor is serious or not







- **F** Applications
- Cross Validation Techniques







- Applications
- **Cross Validation Techniques**

#### **Cross Validation Techniques**



Accuracy of an ML model on Train dataset is 95% on Test dataset. Is it good?





Q & A