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Abstract

Although most software packages
classify Principal Component Anal-
ysis (PCA) under Factor Analysis, as
a procedure for variable reduction,
PCA is in essence rather different
from Factor Analysis. This article
discusses some details of these two
techniques with a view to pointing
out the difference.

Principal Components Analysis
and Factor Analysis

Common Theme of the Methods

Both Principal Component Analysis and Common Factor Analysis are methods
to decompose a covariance or a correlation matrix with a view to reduce the
dimensionality of the data. Although they are based on different mathematical
models, they can be applied on the same data and more often than not produce
similar results. The results generally consist of fewer components or factors than
the number of variables in the data. This leads to useful interpretation of the
components and factors, which can be used in further analysis like regression,
ANOVA, discriminant analysis, cluster analysis, etc.

What are Principal Components?

Let us consider the following data set where we have the sales figures of the 50 stores
of an apparel chain. The data consists of sales of the four departments—women’s,
men’s, children’s, and accessories, for a particular month in ’0000 USD.

Data on Sales of Stores in Different Departments
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The covariance and correlation matrices of the four variables are as follows:

The issue dealt with by principal components is a representation of the four dimen-
sions (variables) in terms of a smaller number (one or more) of dimensions without
losing much information. The notion of information used in this context is the
variation among the observational units of the four variables. The four dimensions
together have a variance of 7261.384 (sum of the diagonal elements of the covari-
ance matrix given above). Can a large part of this total variance be captured by
one or more combinations of the four dimensions? Let us simplify this question by
asking for only linear combinations of the four dimensions represented by a general
form:

Y1 � `1Accessories� `2Women1s� `3Men1s� `4Children1s

If we ask for only one combination, the question reduces to asking for `1, `2, `3, `4
such that Y1 has the largest variance among all choices of `1, `2, `3, `4. But this
question is ill formulated; for, if we find one such Y1, then cY1 for c ¡ 1 will have
c2V arpY1) and so this variance can be made infinite. But then Y1 and cY1 represent
the same variable in different units. Thus a meaningful formulation of the problem
can be to constrain the `1, `2, `3, `4 in a way. One such way is to make them relative,
that is by saying `1 � `2 � `3 � `4 � 1, in which case the above ill-posed nature of
the problem will disappear. Another way is to make `21 � `22 � `23 � `24 � 1. Let us
call such a linear combination a normalized one. Although both constraints are
reasonable, the latter leads to mathematically and computationally elegant and
convenient solutions.

In our example, the normalized linear combination with the largest variance is

0.0412Accessories� 0.995Women1s� 0.0463Men1s

�0.075Children1s

with a variance of 7010.734. This is called the first principal component of the
covariance matrix. It captures a proportion of 0.9655 of the total variance of
7261.384. This component is heavily weighted towards the Women’s clothing
variable, the reason being that Women’s clothing has a large variance relative to the
other variables. We shall discuss this issue of whether we should consider different
variables with largely different variances for this analysis in a later section.

In situations where the first principal component does not capture an adequate
amount of the overall variance, we might want another component. This component
should ideally not contain information (variance) contained in the first component.
A statistical way of formulating this idea is to ask for another component which is
uncorrelated with the first one and among such has the largest variance. This is
called the second principal component. If there are p dimesnions in the original
data, we can thus extract p components with decreasing variance, each uncorrelated
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with all the earlier ones. These then will have a total variance the same as that of
the original variables; the components will then be just a transformed version of the
original variables. A useful situation is one where the few first components explain
a large amount of the total variance.

The mathematical solution to this problem is the computation of eigenvalues and
eigenvectors of the covariance or the correlation matrix. These eigenvalues will all
be non-negative (0 will be an eigenvalue if and only if the matrix is singular). If the
eigenvalues are arranged in decreasing order then they represent the variances
of the first, second, .... components and the corresponding eigenvectors give the
coefficients of the linear combinations representing the corresponding principal
components.

In the example the second, third, and the fourth components are:

�0.0448Accessories� 0.0588Women1s� 0.9769Men1s� 0.2007Children1s

0.07989Accessories� 0.0676Women1s� 0.2005Men1s� 0.9741Children1s

�0.9949Accessories� 0.0389Women1s� 0.0582Men1s� 0.0723Children1s

with variances 202.01, 42.12, and 6.17 respectively of the total 7261.38 with
proportions 0.0278, 0.0058, and 0.00085 respectively.

The first component has positive signs for all the variables and so can be interpreted
as an overall sales level, whereas the other components are differences of various
kinds.

Covariance or Correlation

The correlation matrix is the covariance matrix of standardized variables. Thus all
the variances are 1 as you notice in the correlation matrix above. If your variables
are measured on very different scales, you may want to work with correlations
rather than covariances. In that case the variances of the four components are:
2.480, 0.990, 0.357, and 0.173
respectively adding upto 4. The proportions explained are:
0.620, 0.247, 0.089, 0.043
respectively. The components are given by
Component 1: 0.536Accessories+ 0.583Women’s+ 0.278Men’s + 0.543Children’s

Component 2: 0.418Accessories+ 0.188Women’s �0.873Men’s �0.167Chilkdren’s

Component 3: �341Accessories �0.268Women’s �0.378Men’s + 0.818Children’s

Component 4: 0.649Accessories �0.743Women’s + 0.134Men’s+ 0.000Children’s

An explanation for the coefficients (loadings) is that each coefficient is the cor-
relation between the component and the variable concerned. As before, the first
component is a kind of sales level being a weighted average of the four sales figures.
The other components are differences of various kinds. The first component explains
only about 62% of variance and the first two together about 87%.
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For each case (store) in the data, scores based on each of the principal components
can be computed. Since the first two components capture a great proportion of
the data, a plot of the first two component scores for each case can be plotted as a
scatter plot. This can sometimes help in finding clusters in the data.

Factor Analysis

We have seen how principal component analysis is a procedure for computing
new variables that summarize variation in reduced space parsimoniously. The first
principal component of the correlation matrix was
0.536Accessories+ 0.583Women’s+ 0.278Men’s + 0.543Children’s

This equation is of the form:
Component = Linear combination of observed variables
Factor analysis turns this equation around:
Observed variable = Linear combination of Factors + Error
In mathematical terms the factor model can be written as

y � Λx� z

where y is a p-vector of observed variables, x is a k-vector (k   p) of latent
(unobserved) variables, z is a p-vector of the so-called unique scores, Λ is a p �
k matrix of factor loadings. It is assumed that Epxq � Epyq � 0

¯
, EpxxT q �

Φ, EpzzT q � Ψ, a diagonal matrix. Although this looks like a linear regression
model, it is not such a model since there are no unique observable or of factor
scores or residuals to examine.

Factor analysts are less interested in prediction than in decomposing a covariance
or a correlation matrix. Hence the fundamental equation of factor analysis is not in
terms of the linear model stated above, but its quadratic form as:

Observed covariances = Factor covariances + Error Covariances
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The mathematical version of this is:

Σ � ΛΦΛT �Ψ

where Σ is the p�p covariance matrix, Φ is a k�k matrix of factor correlations and
Ψ is a p� p matrix of unique/error variances. The diagonal elements of matrices Φ
and Ψ are hypothetical ones arrived at by the analysis and are known respectively
as communalities and specificities. Thus factor analysis expresses variation within
and relations among the observed variables partly as common variation among
factors and partly as specific variation among random errors.

From the correlation or covariance matrix, factor loadings are estimated. This
is called initial factor extraction. There are many methods for doing this, like
generalized least squares and maximum likelihood.

The initial factors or the principal components do not necessarily give interpretable
factors or components. Factors or components are rotated in order to make them
interpretable. This is achieved by making the large loadings larger and the smaller
ones smaller so that each variable is associated with a small number of factors or
components. It is hoped that variables that load strongly with a given factor or
component will have a clear meaning in the context of the data.

Generally, the initial factor analysis called Exploratory Factor Analysis is followed
with Confirmatory Factor Analysis to confirm the hypothesized factor structure and
to validate it by computing goodness-of-fit measures.

In the stores sales example, only one factor could be extracted since the number
of parameters to be estimated will be too high for more than one factor. The
factor scores are 0.818, 0.979, 0.262, 0.683 which are correlations of the four
departmental sales with the latent factor extracted. This shows that the factor is an
overall weighted summary of the four sales figures.

Principal Components versus Factor Analysis

One of the main differences between principal components and factors is that
factors are indeterminate or latent whereas principal components are explicit.
Unlike principal components, there are no natural factor scores for observational
units. The reason is that in factor analysis there are more indeterminable parameters
than observations. Interpretations have to be done, as done above, by considering
factor weights as correlations of factors with the variables.
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