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Abstract

Parametric statistical methods are
based on a number of assumptions
not often satisfied by the data. Non-
parametric methods require less as-
sumptions but are less efficient. To
overcome these limitations, it is pos-
sible to use distribution-free and
assumption-free methods which de-
pend only on the data on hand. But
these procedures depend on resam-
pling the data in a suitable manner.
This involves a huge amount of com-
putations but can be accomplished
with modern computing resources.

Permutation Tests

Introduction

Parametric and nonparametric statistical methods require the data to satisfy certain
assumptions and cannot be used on data that are small and ill-behaved. Analysis of
such data can be tackled by “exact” statistical methods which require only simple
and minimal assumptions about the source of data and their behavior.

Exact methods belong to the class of methods which depend on “resampling” from
the data on hand and generating reference distributions thereof. These techniques
include methods known as Resampling Methods, Permutation Methods, Monte Carlo
Methods, Bootstrap Methods, Exact Methods, etc. This article is an introduction to
these methods.

The implementation of these methods require a great deal of computing resources
but can be achieved easily by modern computers.

Example: Paired t Test

Let us consider an example of data on the number of driving hours in a month of
the husband and wife of 20 couples and examine if the mean driving hours of the
husband and wife are the same. The observations are as follows:

Driving Hours

Husband Wife
149 0

0 51
0 0

259 385
106 0
255 235

0 0
52 0

340 48
0 65

180 77
0 0

84 0
89 0

212 53
554 150
500 0
424 165
112 98

2600 0

Notice that this is paired (correlated) data.
If you were to use parametric methods,
you would opt for a paired t test with
results:

Mean Difference = 229.45 SD Difference
= 579.60 95.00t = 1.770395 df = 19
Prob = 0.092706

But the assumption required for it is that,
the difference is normally distributed. But
one look at the data will be enough to con-
vince you that this is going to be no good,
what with lack of symmetry, extreme val-
ues and outliers, etc.
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A nonparametric test for this is the Wilcoxon Signed Rank Test. This test uses the
differences, their signs, the mean values of positive and negative differences and
constructs a statistic denoted by V and uses the asymptotic distribution of V under
the null hypothesis with the following results:

Wilcoxon signed rank test with continuity correction

V = 135, p-value = 0.00604
alternative hypothesis: true location shift is not equal to 0

Warning message: In wilcox.test.default(husband, wife, paired = TRUE): cannot
compute exact p-value with zeroes. The test is asymptotic and it has problems with
0’s. We have only 20 observations. The p-values are vastly different.

Permutation Test for Paired Observations

An exact test approach to this problem is as follows: Under the hypothesis that
there is no difference in the husband-wife distributions, in each pair either of the
two numbers could have been the husband’s and, the other the wife’s. So under the
hypothesis, we could have obtained any of the 220 possible data sets and what we
have observed is one of them.

The steps involved in developing a Permutation Test are as follows:

1. Analyze the problem: Set up a hypothesis; an alternative; understand data
assumptions

2. Choose a statistic S to distinguish the hypothesis from the alternative
3. Compute statistic S from the given data
4. Find all re-arrangements of data as per the same data design consistent with

the hypothesis
5. For each re-arrangement, compute statistic S
6. Form histogram of S values
7. Compare with S obtained in 3 above to determine the proportion of cases

as more extreme than observed S, just like you do in conventional p-value
computation

8. This proportion is the p-value.

Permutation Test for Paired Values

• Hypothesis to be tested is mean of husband = mean of wife; alternative: mean
of husband � mean of wife. The data appear in (husband, wife) pairs; each
data point is a pair, which should not be separated during permutation.

• Let us choose the statistic as S = difference between husband mean and wife
mean.

• For given data S = 229.45
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• Re-arrangements will consist of interchanging the husband and wife values
in a subset of data points and leaving the rest alone. This would mean that
each data point has one of the two options: interchange or keep the same
as observed. This means that the total number of possible permutations =
220 � 1048576. Note that keeping the pair together is the essence of the choice
of permutations.
Also, keep in mind that if the data is two-sample data, which means that there
are 40 subjects with 20 husbands and 20 (independent) wives chosen, then the
permutation set will consist of distributing the 40 numbers into subsets of 20
each, one for husbands and one for wives, amounting to

�
40
20

�
� 137846528820

permutations . This is not correct permuting for the paired case. Keeping the
pairs intact naturally results in a much smaller number of permutations.

• The histogram of the S values are given in the graph below. Notice that for
each permutation there is an exact opposite permutation for which the S value
is the same with opposite sign. Thus it is enough to compute S for only half
of the permutations.

• This distribution of S can be regarded as the reference or null distribution for
computing p values and confidence intervals. In parametric inference, this
reference distribution is computed theoretically from the assumptions. In non-
parametric inference, the asymptotic distribution is computed theoretically.

Permutation Distribution

Histogram of the Mean Difference in the 220 Permuted Samples

Hypothesis Testing with Permutation Distribution

• There are 1800 �2 observations in ‘mean’ which are outside of
(-229.45,229.45)

• The proportion of observations in ‘mean’ outside
(-229.45,229.45) is 0.003433
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• Thus the two-sided permutation (exact) p-value = 0.003433
• Notice the enormous difference in the p-values of the three tests. The Permu-

tation Test is the most valid of these as it is not based on any assumptions.

Properties of Permutation Tests

• This approach is applicable to a wide variety of problems
• The method is based only on observed data
• Data peculiarities are tolerated
• No models are used
• No sampling distribution assumptions or asymptotics are invoked
• The power of this test approximates to a corresponding parametric test when

applicable
• The p-value computed is exact
• A permutation test is generally more powerful than a “traditional” nonpara-

metric test

Randomization Test

Note that even for such a small sample in this example, the number of permutations
is huge. In a larger data set, it will be quite impossible to generate and compute
for all the permutations. In such cases, a random sample of permutations carefully
chosen will be adequate. Tests based on such samples are called Randomization
Tests. They have properties similar to Permutation Tests.

There are other variations of these tests such as Monte Carlo Tests, Bootstrap Tests,
etc.
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