
0Mu Sigma Confidential

Chicago, IL

Bangalore, India

www.mu-sigma.com

Proprietary Information

"This document and its attachments are confidential. Anyunauthorized copying, disclosure or distribution of the material is strictly forbidden"

Chicago, IL

Bangalore, India

www.mu-sigma.com

Proprietary Information

"This document and its attachments are confidential. Anyunauthorized copying, disclosure or distribution of the material is strictly forbidden"

Do The Math

Getting started with Hadoop

August 6, 2012

11Mu Sigma Confidential

The Story of Hadoop

Building Blocks of Hadoop

Working with Hadoop

Agenda

2Mu Sigma Confidential

Why Hadoop?

The amount of digital information produced in 2011 was around 1800 exabytes, that was

around 10 times the information produced in 2006

The majority of this data is “unstructured” – complex data poorly suited for management by

structured storage systems like relational databases

Unstructured data comes from many sources and takes many forms – web logs, text files,

sensor readings, user-generated content like product reviews or text messages, audio, video,

photos and the like

Large volumes of complex unstructured data can hide important insights

– Do user logs from a web site contain information about relationships among individual customers?

– Can a collection of nucleotide sequences be assembled into a single gene?

Companies that can extract facts like these from huge volume of data can better control the

processes and costs; can better predict demand and can build better products

3Mu Sigma Confidential

Where did Hadoop come from?

The underlying technology was invented by Google in their early days so that they could

usefully index all the rich textual and structural information they were collecting, and then

present meaningful and actionable results to users

 In 2004 a paper named MapReduce: Simplified Data Processing on Large Clusters by

Jeffrey Dean and Sanjay Ghemawat from Google Lab was published

 This paper inspired Doug Cutting to develop an open-source implementation of the Map-

Reduce framework. He named it Hadoop, after his son's toy elephant

4Mu Sigma Confidential

What is Hadoop?

Dealing with big data requires two things:

– Inexpensive, reliable storage

– New tools for analyzing unstructured and structured data

Apache Hadoop is a powerful open source software platform that addresses both of these

problems. The platform was designed to solve problems where you have a lot of data, perhaps

a mixture of complex and structured data, and it doesn’t fit nicely into tables

The Apache Hadoop software library is a framework that allows for the distributed processing

of large data sets across clusters of computers using a simple programming model

 It is designed to scale up from a single server to thousands of machines, each offering local

computation and storage

Rather than rely on hardware to deliver high-avaiability, the library itself is designed to detect

and handle failures at the application layer

5Mu Sigma Confidential

How is Hadoop architected?

Hadoop is designed to run on a large number of machines that don’t share any memory or

disks

That means that you can buy a whole bunch of commodity servers, put them together in a rack

and run hadoop on each one

When you load data into Hadoop, the hadoop framework chops the data into pieces that are

then spread across the different servers

There is no one place where you can go to and talk with your data. Hadoop keeps track of

where the data resides on the servers

Data Replication: The pieces of your data is also saved at multiple servers. And because there

are multiple copies, data stored on a server that goes offline or dies can be automatically

replicated from a known good copy

6Mu Sigma Confidential

Building Blocks of Hadoop

Hadoop employs master/slave architecture for both distributed storage and distributed

computation. Running Hadoop means running a set of daemons or resident programs in your

network. Some exist on one server, while some exists on multiple servers. The daemons

include:

NameNode

DataNode

Secondary NameNode

JobTracker

TaskTracker

7Mu Sigma Confidential

Namenode – master of the HDFS

Hadoop’s distributed storage system is called Hadoop File System (HDFS). The NameNode is

the master of HDFS that directs the slave DataNode daemons to perform the low-level I/O

tasks.

The NameNode is the bookkeeper of HDFS. It keeps track of how your files are broken down

into file blocks, which nodes store those blocks and the overall health of the distributed

filesystem.

The function of the NameNode is memory and I/O intensive. For one hadoop cluster, we will

be having only one NameNode running. So if a NameNode fails your whole cluster goes down.

NameNode is a single point of failure for the Hadoop cluster. For other daemons, if their host

nodes fail because of software or hardware reasons, the Hadoop cluster continue to function

smoothly or you can quickly restart the daemons that went down.

Note: Since Hadoop 0.23.2, high availability Namenode was introduced which eliminates the

SPOF

8Mu Sigma Confidential

Datanode – the data handling daemon in every slave node

There will be one datanode per slave machine in your hadoop cluster. Each slave machine will

host DataNode daemon to perform the grunt work of the distributed filesystem - reading and

writing HDFS blocks to actual files on the local filesystem.

Whenever we want to write a HDFS file, the NameNode will tell your client which DataNode

each block resides in or where it should write the block. The client communicates directly with

the DataNode daemons to process the local files corresponding to the blocks. Also DataNode

can communicate with other DataNodes to replicate its data blocks for redundancy.

 DataNodes constantly reports to the NameNode. Upon initialization, each of the DataNodes

informs the NameNode of the blocks it is currently storing. After this mapping is complete, the

DataNodes continually poll the NameNode to provide information regarding local changes as

well as receive instructions to create, move or delete blocks from the local disk.

9Mu Sigma Confidential

Secondary NameNode – keeps a copy of NameNode’s HDFS
metadata

Secondary NameNode is an assistant daemon for monitoring the state of HDFS cluster. Like

NameNode, each cluster has one Secondary NameNode. It does not receive or record any

real-time changes to HDFS, instead it communicates with the NameNode to take the

snapshots of the HDFS metadata at intervals defined by the cluster configuration.

Since NameNode is single point of failure for a Hadoop-cluster, Secondary NameNode’s

snapshots help minimize the downtime and loss of data. However, NameNode failure requires

human intervention to reconfigure the cluster to use the Secondary NameNode as the primary

NameNode.

10Mu Sigma Confidential

JobTracker – Assigns jobs to the tasktrackers and gets the work
done

Once we submit the code to the cluster, the JobTracker determines the execution plan by

determining which files to process, assigns nodes to different tasks, and monitors all tasks as

they are running. If any task fails, the JobTracker will automatically relaunch the task, possibly

on a different node, up to the predefined limit of retries.

There is only one JobTracker daemon per cluster and it typically runs on a server which is the

master node of the cluster.

11Mu Sigma Confidential

TaskTracker

Computing daemons also follow master/slave architecture: JobTracker is the master

overseeing the overall execution of the MapReduce job and the TaskTrackers manage the

execution of individual tasks on each slave node.

Each TaskTracker is responsible for executing the individual tasks that the JobTracker

assigns. Although there is a single TaskTracker per slave node, each TaskTracker can spawn

multiple JVMs to handle many maps or reduce tasks in parallel.

One responsibility of the TaskTracker is to constantly communicate with the JobTracker. If

JobTracker fails to receive any heartbeat from a TaskTracker within a specified amount of

time, it will assume the TaskTracker has crashed and will resubmit the corresponding tasks to

other nodes to the cluster.

12Mu Sigma Confidential

The Daemons

13Mu Sigma Confidential

How is data stored in the HDFS

Here a very basic idea of how files are stored in HDFS is show

First the file is split into blocks of 64 MB or 128 MB depending upon the default block size

These blocks are then distributed across the cluster depending upon the replication factor

By default the replication factor is 3

Thus even if a few datanodes crash or become

unavailable the data is not lost

14Mu Sigma Confidential

Lets get started with Hadoop

The $HADOOP_HOME/bin directory contains some scripts used to launch Hadoop DFS and

Hadoop Map/Reduce daemons

1. start-dfs.sh - Starts the Hadoop DFS daemons, the namenode and datanodes. Use this

before start-mapred.sh

2. stop-dfs.sh - Stops the Hadoop DFS daemons

3. start-mapred.sh - Starts the Hadoop Map/Reduce daemons, the jobtracker and tasktrackers

4. stop-mapred.sh - Stops the Hadoop Map/Reduce daemons

5. start-all.sh - Starts all Hadoop daemons, the namenode, datanodes, the jobtracker and

tasktrackers.

6. stop-all.sh - Stops all Hadoop daemons.

15Mu Sigma Confidential

Test if the daemons have started

Use the command jps to find out if the processes have started.

 jps output should look something like this

Check the corresponding daemon logs if any of the daemons don’t start as expected.

$ jps

1375 SecondaryNameNode

1560 TaskTracker

12835 Jps

1246 DataNode

1453 JobTracker

1138 NameNode

16Mu Sigma Confidential

Hadoop Web Interface

http://localhost:50030/- web UI for MapReduce job tracker(s)

http://localhost:50060/ - web UI for task tracker(s)

http://localhost:50070/ - web UI for HDFS name node(s)

http://localhost:50030/
http://localhost:50060/
http://localhost:50070/

17Mu Sigma Confidential

Understanding the difference between HDFS and the local linux file
system

HDFS is distributed, the files that you upload into the HDFS will be split into blocks and it will

be distributed across the cluster

Hadoop jobs can only access data in the HDFS, so if you have data in the local file system,

say in your home directory, you can’t give its location as an input parameter for your job

You need to copy the file into the HDFS before running the job. You will get a better

understanding as we run some examples

18Mu Sigma Confidential

Running some examples

To keep thing simple we will run the “hello world” of the hadoop world, the wordcount

Wordcount is a simple mapreduce program that reads a file and counts the number of times a

word occurs in that file

Hadoop comes with a set of example programs that are bundled in the hadoop examples jar

file. You can use these programs for testing out hadoop, wordcount is one of the examples.

Wordcount needs 2 arguments;

– The input folder containing files for processing and

– The output-folder for writing the results

As it was told before, hadoop does not understand local file system, so we need to copy the

files to the HDFS before we can run our wordcount program on them

19Mu Sigma Confidential

Running WordCount on hadoop

First make sure your hadoop is running.

– $ start-all.sh

Copy files that needs to be processed from local filesystem to HDFS so that the hadoop job

can access the data

– $ hadoop fs -copyFromLocal
/home/hadoop/Documents/Hadoop/GettingStartedWithHadoop/Datasets/WordcountInput

Check whether your data is copied properly on HDFS filesystem or not.

– $ hadoop fs -ls

– $ hadoop fs -ls input

Now we have the data to be processed, run wordcount example on it.

– $ cd $HADOOP_HOME

– $ hadoop jar hadoop-examples-0.20.2-cdh3u4.jar wordcount TrainingDatasets/Hadoop/WordcountInput
TrainingDatasets/Hadoop/WordcountOutput

20Mu Sigma Confidential

Viewing the output from the HDFS

The output will be stored in a HDFS location as specified in the output argument

– TrainingDatasets/Hadoop/WordcountOutput

This is a HDFS location and you can view the output by the following command

– hadoop fs –ls TrainingDatasets/Hadoop/WordcountOutput/

– hadoop fs –cat TrainingDatasets/Hadoop/WordcountOutput/*

21Mu Sigma Confidential

Configuring Hadoop to our needs

Hadoop configuration files are stored in $HADOOP_HOME/conf location. Make sure while

making any changes to these files, login as hadoop user that can run hadoop jobs.

Configuring & tweaking hadoop is done by manipulating the following files

Open these files to understand what they do

1. hadoop-env.sh --- deals with hadoop specific environment variables.

2. core-site.xml --- specifying HDFS storing directory as well as HDFS URI

3. hdfs-site.xml --- specifying how many copies our cluster have to maintain

4. mapred-site.xml --- specifying details about jobtracker

5. masters --- specifying hostname of master

6. slaves --- specifying hostname of slaves

22Mu Sigma Confidential

Let’s wrap it up!

Hadoop is Accessible, Robust, Scalable and Simple

Accessible: It runs on large clusters of commodity machines. It also supports cloud computing

services such as Amazon’s EC2

Robust: Hadoop is architected with the assumption of frequent hardware failures. So we can

say it is designed to support fault tolerance

Scalable: Hadoop scales linearly to handle larger data by adding more nodes to the cluster

Simple: Allows user to quickly write efficient parallel code

You can also use Hive, Pig or hadoop streaming if you not a big fan of java programming

Please visit these links

– http://wiki.apache.org/hadoop/FAQ

– http://hadoop.apache.org/

http://wiki.apache.org/hadoop/FAQ
http://hadoop.apache.org/

23Mu Sigma Confidential

Thank You

Chicago, IL

Bangalore, India

August 6, 2012

www.mu-sigma.com

Proprietary Information

"This document and its attachments are confidential. Any unauthorized copying, disclosure or distribution of the material is strictly prohibited"

http://www.nmhg.com/default.asp
http://www.nmhg.com/default.asp

