
0Mu Sigma Confidential

Chicago, IL

Bangalore, India

www.mu-sigma.com

Proprietary Information

"This document and its attachments are confidential. Anyunauthorized copying, disclosure or distribution of the material is strictly forbidden"

Chicago, IL

Bangalore, India

www.mu-sigma.com

Proprietary Information

"This document and its attachments are confidential. Anyunauthorized copying, disclosure or distribution of the material is strictly forbidden"

Do The Math

Introduction to Hive

December, 2013

11Mu Sigma Confidential

 Introduction to Hive

Data Types and Data Units

Hive - Data Definition Language

Hive - Data Manipulation Language

Executing Hive

Functions- Windowing, Analytics and UDFs

Compression and Indexing

Hive Optimizations and Tuning

Exercises

Agenda

2Mu Sigma Confidential

Introduction to Hive

Apache Hive is a data warehouse infrastructure built on top of Hadoop for providing data

summarization, query, and analysis.

While initially developed by Facebook, Apache Hive is now used and developed by other

companies such as Netflix and Amazon

Main features:

– Apache Hive supports analysis of large datasets stored in Hadoop's HDFS and compatible file systems.

– It provides an SQL-like language called HiveQL while maintaining full support for map/reduce. To
accelerate queries, it provides indexes, including bitmap indexes.

– By default, Hive stores metadata in an embedded Apache Derby database, and other client/server
databases like MySQL can optionally be used.

– Currently, in Hive 0.12.0(Oct , 2013) there are four file formats supported in Hive, which are TEXTFILE,
SEQUENCEFILE, ORC and RCFILE.

Introduction to Hive

3Mu Sigma Confidential

Why do you need Hive?

Hadoop is the future of enterprise data management and Hive is the gateway for business

intelligence and visualization tools integrated with Hadoop.

Here are some advantages of Hive:

– Hundreds of unique users can simultaneously query the data using a language familiar to SQL users.

– Familiar JDBC and ODBC drivers allow many applications to pull Hive data for seamless reporting. Hive
allows users to read data in arbitrary formats, using SerDes and Input/Output formats.

– Operating on compressed data stored into Hadoop ecosystem, algorithm including gzip, bzip2, snappy,
etc.

– Built-in user defined functions (UDFs) to manipulate dates, strings, and other data-mining tools. Hive
supports extending the UDF set to handle use-cases not supported by built-in functions

Introduction to Hive

4Mu Sigma Confidential

How Hive relates to the Hadoop ecosystem

HDFSMap Reduce

Web UI + Hive CLI +

JDBC/ODBC

Browse, Query, DDL

MetaStore

Thrift API

Hive QL

Parser

Planner

Optimizer
Execution

SerDe

CSV

Thrift

Regex

UDF/UDAF

substr

sum

average

FileFormats

TextFile

SequenceFile

RCFile

User-defined

Map-reduce Scripts

User

Introduction to Hive

5Mu Sigma Confidential

Hive Architecture

Hive Architecture

 Metastore: stores system catalog

 Driver: manages life cycle of HiveQL query as it
moves through HIVE; also manages session handle
and session statistics

 Query compiler: Compiles HiveQL into a directed
acyclic graph of map/reduce tasks

 Execution engines: The component executes the
tasks in proper dependency order; interacts with
Hadoop

 HiveServer: provides Thrift interface and
JDBC/ODBC for integrating other applications.

 Client components: CLI, web interface, jdbc/odbc
inteface

 Extensibility interface include SerDe, User Defined
Functions and User Defined Aggregate Function.

Image Courtesy: www.Cubrid.org

6Mu Sigma Confidential

Hive Use cases

Log processing

– Call logs, web logs, machine logs – Big, repetitively collected Data

Text mining

– Unstructured textual data with a convenient structure overlaid and analyzed with map-reduce

Reporting and Adhoc Analysis

– Query transaction history, payment history – Querying historic data

– Microstrategy reports

Machine Learning (Assembling training data)

– Ad Optimization – User engagement as a function of user attributes

Hive use cases

77Mu Sigma Confidential

 Introduction to Hive

Data Types and Data Units

Hive - Data Definition Language

Hive - Data Manipulation Language

Executing Hive

Functions- Windowing, Analytics and UDFs

Compression and Indexing

Hive Optimizations and Tuning

Exercises

Agenda

8Mu Sigma Confidential

Hive Data Types

Hive structures data into well-understood database concepts such as tables, rows, columns,

partitions

1. Numeric Types

TINYINT, SMALLINT, INT, BIGINT, FLOAT, DOUBLE, DECIMAL

2. Date/Time Types

TIMESTAMP, DATE

3. String Types

STRING, VARCHAR

4. Misc Type

BOOLEAN, BINARY

5. Complex Types

– arrays: ARRAY<data_type>

– maps: MAP<primitive_type, data_type>

– structs: STRUCT<col_name : data_type [COMMENT col_comment], ...>

– union: UNIONTYPE<data_type, data_type, ...>

Hive Data Types and Data Units

9Mu Sigma Confidential

Data Units in Hive

 In the order of granularity - Hive data is organized into:

– Databases: Namespaces that separate tables and other data units from naming conflicts.

– Tables: Homogeneous units of data which have the same schema.

» An example of a table could be page_views table, where each row could comprise of the following columns
(schema):

• timestamp - which is of INT type that corresponds to a unix timestamp of when the page was viewed.

• userid - which is of BIGINT type that identifies the user who viewed the page.

• page_url - which is of STRING type that captures the location of the page.

– Partitions: Each Table can have one or more partition Keys which determines how the data is stored.
Partitions - apart from being storage units - also allow the user to efficiently identify the rows that satisfy a
certain criteria.

» For example, a date_partition of type STRING and country_partition of type STRING. Each unique value of the
partition keys defines a partition of the Table.

– Buckets (or Clusters): Data in each partition may in turn be divided into Buckets based on the value of a
hash function of some column of the Table.

» For example the page_views table may be bucketed by userid, which is one of the columns, other than the
partitions columns, of the page_view table. These can be used to efficiently sample the data.

Hive Data Types and Data Units

1010Mu Sigma Confidential

 Introduction to Hive

Data Types and Data Units

Hive - Data Definition Language

Hive - Data Manipulation Language

Executing Hive

Functions- Windowing, Analytics and UDFs

Compression and Indexing

Hive Optimizations and Tuning

Exercises

Agenda

11Mu Sigma Confidential

Hive Data Definition Language – CREATE TABLE

The CREATE TABLE with all the options are shown

– CREATE [EXTERNAL] TABLE [IF NOT EXISTS] [db_name.]table_name

[(col_name data_type [COMMENT col_comment], ...)] [COMMENT table_comment]

[PARTITIONED BY (col_name data_type [COMMENT col_comment], ...)]

[CLUSTERED BY (col_name, col_name, ...)

[SORTED BY (col_name [ASC|DESC], ...)] INTO num_buckets BUCKETS]

[SKEWED BY (col_name, col_name, ...) ON ([(col_value, col_value, ...),

...|col_value, col_value, ...])]

[[ROW FORMAT row_format] [STORED AS file_format] | STORED BY
'storage.handler.class.name' [WITH SERDEPROPERTIES (...)]]

[LOCATION hdfs_path]

[TBLPROPERTIES (property_name=property_value, ...)]

[AS select_statement]

The important options in CREATING a table will be discussed in the coming slides.

Hive DDL – Create Table

12Mu Sigma Confidential

Create table options

Skewed Tables

– This feature can be used to improve performance for tables where one or more columns have skewed
values. By specifying the values that appear very often (heavy skew) Hive will split those out into separate
files automatically and take this fact into account during queries so that it can skip (or include) whole files
if possible.

– CREATE TABLE list_bucket_single (key STRING, value STRING) SKEWED BY (key) ON

(1,5,6);

Create Table As Select (CTAS)

– Tables can also be created and populated by the results of a query in one create-table-as-select (CTAS)
statement. The table created by CTAS is atomic, meaning that the table is not seen by other users until all
the query results are populated.

– CREATE TABLE new_key_value_store ROW FORMAT SERDE
"org.apache.hadoop.hive.serde2.columnar.ColumnarSerDe" STORED AS RCFile AS

SELECT (key % 1024) new_key, concat(key, value) key_value_pair

FROM key_value_store SORT BY new_key, key_value_pair;

Create Table Like

– The LIKE form of CREATE TABLE allows you to copy an existing table definition exactly (without copying
its data).

– CREATE [EXTERNAL] TABLE [IF NOT EXISTS] [db_name.]table_name LIKE

existing_table_or_view_name [LOCATION hdfs_path]

Hive DDL – Create Table

13Mu Sigma Confidential

Row Format and SerDe

 row_format

– DELIMITED [FIELDS TERMINATED BY char [ESCAPED BY char]] [COLLECTION ITEMS

TERMINATED BY char]

[MAP KEYS TERMINATED BY char] [LINES TERMINATED BY char]

SerDe is short for serializer/deserializer. A SerDe encapsulates the logic for converting the

unstructured bytes in a record, which is stored as part of a file, into a record that Hive can use.

SerDes are implemented using Java. Hive comes with several built-in SerDes and many other

third-party SerDes are available.

– SERDE serde_name [WITH SERDEPROPERTIES (property_name=property_value,

property_name=property_value, ...)]

– For reference:https://cwiki.apache.org/confluence/display/Hive/LanguageManual+DDL

Hive DDL – Row Format

14Mu Sigma Confidential

Data Storage Formats

File formats are specified at the table (or partition) level. You can specify the ORC file format

with Hive QL statements such as these:

– CREATE TABLE ... STORED AS <File_format>

– ALTER TABLE ... [PARTITION partition_spec] SET FILEFORMAT <File_format>

– SET hive.default.fileformat=<File_format>

Text Files

– Normal storage takes place as Text by default the other formats are discussed below.

Sequence files

– They are flat files consisting of binary key-value pairs.

– Sequence files have three different compression options: NONE, RECORD, and BLOCK.

<property>

<name>mapred.output.compression.type</name>

<value>BLOCK</value>

<description>If the job outputs are to compressed as SequenceFiles,how should

they be compressed? Should be one of NONE, RECORD or BLOCK.</description>

</property>

Hive Storage Formats

15Mu Sigma Confidential

Data Storage Formats contd…

RC File

– Stores columns of a table in a record columnar
way.

– It first partitions rows horizontally into row splits.
and then it vertically partitions each row split in a
columnar way. RCFile first stores the meta data
of a row split, as the key part of a record, and all
the data of a row split as the value part.

ORC File

– The Optimized Row Columnar (ORC) file format
provides a highly efficient way to store Hive
data.

– It was designed to overcome limitations of the
other Hive file formats. Using ORC files
improves performance when Hive is reading,
writing, and processing data.

Image Courtesy: https://cwiki.apache.org

Hive Storage Formats

ORC File Format

16Mu Sigma Confidential

Data Storage Formats contd…

Parquet File

– Parquet is a column-oriented binary file format intended to be highly efficient for the types of large-scale
queries. Parquet is especially good for queries scanning particular columns within a table, for example to
query "wide" tables with many columns, or to perform aggregation operations such as SUM() and AVG() that
need to process most or all of the values from a column.

– Queries against a Parquet table can retrieve and analyze these values from any column quickly and with
minimal I/O.

Image Courtesy: w ww.hortonworks.com

Hive Storage Formats

17Mu Sigma Confidential

Hive Data Model – Partitions

Analogous to dense indices on partition columns

Nested sub-directories in HDFS for each combination of partition column values

Partition column must not already exist in the table – can be used as a pseudo-column to

query on

CREATE TABLE foo (id INT, msg STRING) PARTITIONED BY (dt STRING, ctry

STRING);

» Example

» Partition columns: ds, ctry

» HDFS subdirectory for ds = 20090801, ctry = US – /wh/pvs/ds=20120201/ctry=US

» HDFS subdirectory for ds = 20090801, ctry = CA – /wh/pvs/ds=20120201/ctry=CA

» Queries with partition columns in WHERE clause will scan through only a subset of the data that which exists in
the specified partition

Hive Partitions

18Mu Sigma Confidential

Hive Data Model - Dynamic Partitions

Dynamic Partition (DP) columns are specified the same way as it is for Static Partitioned (SP)

columns – in the partition clause.

The only difference is that DP columns do not have values, while SP columns do. In the

partition clause, we need to specify all partitioning columns, even if all of them are DP

columns.

 In INSERT ... SELECT ... queries, the dynamic partition columns must be specified last among

the columns in the SELECT statement and in the same order in which they appear in the

PARTITION() clause.

Examples:

– INSERT OVERWRITE TABLE T PARTITION (ds, hr)

SELECT key, value, ds, hr FROM srcpart WHERE ds is not null and hr>10;

– CREATE TABLE T (key int, value string) PARTITIONED BY (ds string, hr int) AS

SELECT key, value, ds, hr+1 hr1 FROM srcpart WHERE ds is not null and hr>10;

Hive Partitions

19Mu Sigma Confidential

Hive Data Model – Buckets

Split data based on hash of a column – mainly for parallelism

One HDFS file per bucket within partition sub-directory

CREATE TABLE user_info_bucketed(user_id BIGINT, firstname STRING,

lastname STRING) COMMENT 'A bucketed copy of user_info' PARTITIONED

BY(ds STRING, ctry STRING) CLUSTERED BY(user_id) INTO 20 BUCKETS;

Example

– Bucket column user_id into 20 buckets

– HDFS file for user_id hash bucket 0 – /wh/pvs/ds=20120201/ctry=US/part-00000

– HDFS file for user_id hash bucket 20 – /wh/pvs/ds=20120201/ctry=US/part-00020

Hive Buckets

20Mu Sigma Confidential

External tables

Point to existing data directories in HDFS

Can create tables and partitions – partition columns just become annotations to external

directories

Example: create external table with partitions

– CREATE EXTERNAL TABLE pvs(userid int, pageid int, ds string, ctry string)

PARTITIONED ON (ds string, ctry string)

STORED AS textfile

LOCATION ‘/path/to/existing/table’

Example: add a partition to external table

– ALTER TABLE pvs ADD PARTITION (ds=‘20120201’, ctry=‘US’)

LOCATION ‘/path/to/existing/partition’

Hive DDL – External Tables

21Mu Sigma Confidential

Hbase Tables from Hive

HBase tables from Hive

– Use the HBaseStorageHandler to register HBase tables with the Hive metastore. You can optionally
specify the HBase table as EXTERNAL, in which case Hive will not create to drop that table directly –
you’ll have to use the HBase shell to do so.

– Schema mapping-As part of that registration, you also need to specify a column mapping. This is how you
link Hive column names to the HBase table’s rowkey and columns. Do so using the
hbase.columns.mapping SerDe property.

CREATE [EXTERNAL] TABLE hive_table(...)

STORED BY 'org.apache.hadoop.hive.hbase.HBaseStorageHandler‘

TBLPROPERTIES ('hbase.table.name' = ‘hbase_table');

CREATE TABLE foo(rowkey STRING, a STRING, b STRING)

STORED BY 'org.apache.hadoop.hive.hbase.HBaseStorageHandler‘

WITH SERDEPROPERTIES ('hbase.columns.mapping' = ':key,f:c1,f:c2‘)

TBLPROPERTIES ('hbase.table.name' = 'bar');

– The above statement registers the HBase table named hbase_table in the Hive metastore, accessible
from Hive by the name hive_table.

– The values provided in the mapping property correspond one-for-one with column names of the hive
table. HBase column names are fully qualified by column family, and you use the special token :key to
represent the rowkey.

Hive DDL – Hbase Tables

22Mu Sigma Confidential

Hive Data Definition Language contd…

Browsing through Tables

– hive> SHOW TABLES;

– hive> SHOW TABLES '.*s';

Altering and Dropping Tables

– Table names can be changed and columns can be added or replaced:

– hive> ALTER TABLE events RENAME TO Days;

– hive> ALTER TABLE pokes ADD COLUMNS (new_col INT);

Dropping tables:

– hive> DROP TABLE pokes;

Hive DDL – Other Commands

23Mu Sigma Confidential

Hive Data Manipulation Language.

Loading data from flat files into Hive:

– hive> LOAD DATA LOCAL INPATH './examples/files/kv1.txt' OVERWRITE INTO TABLE

pokes;

The two LOAD statements below load data into two different partitions of the table invites.

Table invites must be created as partitioned by the key ds for this to succeed.

– hive> LOAD DATA LOCAL INPATH './examples/files/kv2.txt' OVERWRITE INTO TABLE

invites PARTITION (ds='2008-08-15');

– hive> LOAD DATA LOCAL INPATH './examples/files/kv3.txt' OVERWRITE INTO TABLE

invites PARTITION (ds='2008-08-08');

The above command will load data from an HDFS file/directory to the table.

– hive> LOAD DATA INPATH '/user/myname/kv2.txt' OVERWRITE INTO TABLE invites

PARTITION (ds='2008-08-15');

Hive DML

24Mu Sigma Confidential

Hive Data Manipulation Language.

 Inserting Data into Tables from Queries

– The INSERT statement lets you load data into a table from a query.

– INSERT OVERWRITE TABLE employees PARTITION (country = 'US', state = 'OR')
SELECT * FROM staged_employees se

WHERE se.cnty = 'US' AND se.st = 'OR';

Exporting Data

– If the data files are already formatted the way you want, then it’s simple enough to copy the directories or
files:

– hadoop fs -cp source_path target_path

– Otherwise, you can use INSERT ... DIRECTORY ..., as in this example:

– INSERT OVERWRITE LOCAL DIRECTORY '/tmp/ca_employees' SELECT name, salary,

address

FROM employees

WHERE se.state = 'CA';

SerDe: API for serialization and deserialization to be used to move data in and out of tables

Hive DML

25Mu Sigma Confidential

Hive query language – Group by

Efficient execution plans based on:

– Data skew:

» how evenly distributed is data across a number of physical nodes

» bottleneck vs. load balance

Partial aggregation:

– Group the data with the same group by value as soon as possible

» In memory hash-table for mapper

» Earlier than combiner

Example:

SELECT pid, name, count(1)

FROM pv_users

GROUP BY pid, name;

Introduction to Hive Query Language

26Mu Sigma Confidential

Hive query language – Group by illustration

pv_users

Map
Shuffle

Sort
Reduce

pid Name

1 Alex

1 Alex

Key Value

<1, Alex> 2

pid Name

2 Raven

1 Alex

Key Value

<2, Raven> 1

<1, Alex> 1

Key Value

<1, Alex> 2

<1, Alex> 1

Key Value

<2, Raven> 1

pid Name Count

1 Alex 3

pid Name Count

2 Raven 1

Introduction to Hive Query Language

27Mu Sigma Confidential

Hive query language – Joins

Traditional Map-Reduce Join

– Data from each table is read into the mapper which outputs rows

– Mapper output keys are the values of the join key

– Reducers collects values associated with each join key

Early Map-side Join – very efficient for joining a small table with a large table

– Keep smaller table data in memory first

– Join with a chunk of larger table data each time

– Space complexity for time complexity

Example:

INSERT OVERWRITE TABLE pv_users

SELECT pv.pid, u.name

FROM page_views pv

JOIN user u

ON (pv.uid = u.id);

Introduction to Hive Query Language

28Mu Sigma Confidential

Hive query language – Joins illustration

pv_users

Map
Shuffle

Sort
Reduce

page_view

pid uid ctry

1 111 UK

2 111 US

1 222 India

user

id Name gender

111 Alex female

222 Raven male

key Value

111 <1, 1>

111 <1, 2>

222 <2, 1>

key Value

111 <1, Alex>

222 <2, Raven>

key Value

111 <1, 1>

111 <1, 2>

111 <1, Alex>

key Value

222 <2, 1>

222 <2, Raven>

pid Name

1 Alex

2 Alex

pid Name

1 Raven

Introduction to Hive Query Language

29Mu Sigma Confidential

Join Optimisation

Consider the query

SELECT a.ymd, a.price_close, b.price_close , c.price_close

FROM stocks a JOIN stocks b ON a.ymd = b.ymd

JOIN stocks c ON a.ymd = c.ymd

WHERE a.symbol = 'AAPL' AND b.symbol = 'IBM' AND c.symbol = 'GE';

Most of the time, Hive will use a separate MapReduce job for each pair of things to join. In this

example, it would use one job for tables a and b, then a second job to join the output of the

first join with c.

Hive can apply an optimization where it joins all three tables in a single MapReduce job. If

every ON clause uses the same join key, a single MapReduce job will be used.

Hive also assumes that the last table in the query is the largest. It attempts to buffer the other

tables and then stream the last table through, while performing joins on individual records.

Therefore, you should structure your join queries so the largest table is last.

Optimizing Joins

30Mu Sigma Confidential

Join Optimisations - Map side joins

 If all but one table is small, the largest table can be streamed through the mappers while the

small tables are cached in memory. Hive can do all the joining map-side, since it can look up

every possible match against the small tables in memory, thereby eliminating the reduce step

required in the more common join scenarios.

Even on smaller data sets, this optimization is noticeably faster than the normal join. Not only

does it eliminate reduce steps, it sometimes reduces the number of map steps, too.

However, you still have to set a property, hive.auto.convert.join, to true before Hive

will attempt the optimization

you can also configure the threshold size for table files considered small enough to use this

optimization. Here is the default definition of the property (in bytes):

– hive.mapjoin.smalltable.filesize=25000000

Optimizing Joins

3131Mu Sigma Confidential

 Introduction to Hive

Data Types and Data Units

Hive - Data Definition Language

Hive - Data Manipulation Language

Executing Hive

Functions- Windowing, Analytics and UDFs

Compression and Indexing

Hive Optimizations and Tuning

Exercises

Agenda

32Mu Sigma Confidential

Executing Hive – Command-line interface*

Start a terminal and run:

$ hive

You should see a prompt like:

hive>

Set a Hive or Hadoop conf prop:

hive> set propkey=value;

List all properties and values:

hive> set –v;

Add a resource to the DCache:

hive> add [ARCHIVE|FILE|JAR]

filename;

Run a HiveQL script:

hive> source hive_script.ql;

*A web UI exists to run Hive scripts, but not mature for enterprise use

Executing Hive

33Mu Sigma Confidential

Executing Hive – Command-line interface

List tables:

hive> show tables;

Describe a table:

hive> describe <tablename>;

More information:

hive> describe extended <tablename>;

List Functions:

hive> show functions;

More information:

hive> describe function <functionname>;

Executing Hive

34Mu Sigma Confidential

Hue, the open source Apache Hadoop UI

 Hue is an open-source Web interface that supports Apache Hadoop and its ecosystem

 Hue features a File Browser for HDFS, a Job Browser for MapReduce/YARN, an HBase Browser, query

editors for Hive, Pig, Cloudera Impala and Sqoop2.

– It also ships with an Oozie Application for creating and monitoring workflows, a Zookeeper Browser and a SDK.

 Beeswax Hive UI

– The Beeswax application enables you to perform queries on Apache Hive. You can create Hive tables, load data, create,
run, and manage queries and download the results in a Microsoft Office Excel worksheet file or a comma-separated values
file.

Image Courtesy: http://cloudera.github.io/hue/

Hive User Interface

35Mu Sigma Confidential

Executing Hive Scripts – script to execute

-- hive_replace_null_values.ql - Load data from CSV and replace NULL Values

-- Create the Customer table

CREATE TABLE cust(id INT, name STRING, amount DOUBLE) ROW FORMAT DELIMITED

FIELDS TERMINATED BY ',' STORED AS TEXTFILE;

-- Load the data from the local csv file (will overwrite any existing values)

LOAD DATA LOCAL INPATH

"/home/hadoop/Documents/Hive/IntroductionToHive/Datasets/HiveCustData.csv"

OVERWRITE INTO TABLE cust;

-- Create a table to store the mean value of the amount

CREATE TABLE cust_mean(mean DOUBLE, key_id INT);

-- Compute the mean value and store in the table

INSERT OVERWRITE TABLE cust_mean SELECT avg(amount),1 FROM cust;

-- Add key_id column to the cust table also

ALTER TABLE cust ADD COLUMNS(key_id INT);

-- Insert the key_id value for all the rows in the table

INSERT OVERWRITE TABLE cust SELECT cust.id, cust.name, cust.amount, 1 FROM

cust;

-- Now find the NULL values and replace them

INSERT OVERWRITE TABLE cust SELECT cust.id, cust.name, CASE WHEN cust.amount

IS NULL THEN cust_mean.mean ELSE cust.amount END AS amount, 1 FROM cust JOIN

cust_mean ON (cust_mean.key_id = cust.key_id);

Executing Hive

36Mu Sigma Confidential

Windowing and Analytics Functions

Windowing functions

– LEAD

– LAG

The OVER clause

– OVER with standard aggregates: COUNT, SUM, MIN, MAX, AVG

– OVER with a PARTITION BY statement with one or more partitioning columns of any primitive datatype.

– OVER with PARTITION BY and ORDER BY with one or more partitioning and/or ordering columns of any
datatype.

– OVER with a window specification. Window specifications support these standard options:

» SELECT a, AVG(b) OVER (PARTITION BY c ORDER BY d ROWS BETWEEN CURRENT ROW AND
UNBOUNDED FOLLOWING) FROM T;

Analytics functions

– RANK

– ROW_NUMBER

– DENSE_RANK

– CUME_DIST

– PERCENT_RANK

– NTILE

Functions in Hive

37Mu Sigma Confidential

User-defined functions in Hive

UDFs can be defined in any language

– However, UDFs in languages other than Java are implemented using Hadoop streaming and aren’t as
efficient

Hive supports implicit type conversions

– However, it is more efficient to use Hadoop writables

UDF can be overloaded (can be defined for different input types)

UDF can take arguments of variable length, just as in Java

– For example, a UDF to sum or multiply should be able to do so for any number of numbers

Introduction to User Defined Functions in Hive

38Mu Sigma Confidential

A simple UDF example – log transformation

add jar hive-udfs.jar;

CREATE TEMPORARY FUNCTION logval AS

‘com.mu_sigma.hive.udf.UDFLogValue';

SELECT logval(3.14) FROM src;

SELECT logval(5) FROM src;

DROP TEMPORARY FUNCTION logval;

UDFLogValue.java:

package com.mu_sigma.hive.udf;

public class UDFLogValue extends UDF {

/* Evaluate log of Double values */

public Double evaluate(Double s) {

if (s == null)return null;

return java.lang.Math.log(s);

}

/* Evaluate log of Integer values */

public Double evaluate(Integer s) {

if (s == null) return null;

return java.lang.Math.log(Double.valueOf(s.toString()));

}

}

Introduction to User Defined Functions in Hive

39Mu Sigma Confidential

Compression in Hive

Using compression has the advantage of minimizing the disk space required for files and the

overhead of disk and network I/O. Compression is best used for I/O-bound jobs, where there is

extra CPU capacity, or when disk space is at a premium.

The codecs available are in a comma-separated list named io.compression.codec:

– # hive -e "set io.compression.codecs"

io.compression.codecs=org.apache.hadoop.io.compress.GzipCodec,

org.apache.hadoop.io.compress.DefaultCodec,

org.apache.hadoop.io.compress.BZip2Codec,

org.apache.hadoop.io.compress.SnappyCodec

Enabling Intermediate Compression

– hive.exec.compress.intermediate

» This controls whether intermediate files produced by Hive between multiple map-reduce jobs are compressed.
The compression codec and other options are determined from hadoop config variables
mapred.output.compress

Final Output Compression

– hive.exec.compress.output

» This controls whether the final outputs of a query
(to a local/hdfs file or a Hive table) is compressed. The compression codec and other options are determined
from hadoop config variables mapred.output.compress

Hive Compression

40Mu Sigma Confidential

Indexing in Hive

CREATE INDEX creates an index on a table using the given list of columns as keys

 Indexing is to improve the speed of query lookup on certain columns of a table. Without an

index, queries with predicates like 'WHERE tab1.col1 = 10' load the entire table or partition and

process all the rows. But if an index exists for col1, then only a portion of the file needs to be

loaded and processed.

Hive has limited indexing capabilities. There are no keys in the usual relational database

sense, but you can build an index on columns to speed some operations. The index data for a

table is stored in another table.index on the country partition only:

– CREATE INDEX employees_index

ON TABLE employees (country)

AS 'org.apache.hadoop.hive.ql.index.compact.CompactIndexHandler‘

WITH DEFERRED REBUILD

IDXPROPERTIES ('creator = 'me', 'created_at' = 'some_time')

IN TABLE employees_index_table

PARTITIONED BY (country, name)

COMMENT 'Employees indexed by country and name.';

– DROP INDEX [IF EXISTS] index_name ON table_name

Hive Indexing

41Mu Sigma Confidential

Hive Optimisations

Avoid Nulls in Joins

Use Map Side Joins

CLUSTER BY

– Using DISTRIBUTE BY ... SORT BY or the shorthand CLUSTER BY clauses is a way to exploit the
parallelism of SORT BY, yet achieve a total ordering across the output files.

– hive> SELECT s.ymd, s.symbol, s.price_close FROM stocks s CLUSTER BY s.symbol;

Replicating RANK() over PARTITION BY

Optimise GROUP Bys

– hive.optimize.groupby -Whether to enable the bucketed group by from bucketed partitions/tables.

ORDER BY and SORT BY

– The ORDER BY clause is familiar from other SQL dialects. It performs a total ordering of the query result
set. This means that all the data is passed through a single reducer, which may take a long time.

– Hive adds an alternative, SORT BY, that orders the data only within each reducer, thereby performing a
local ordering, where each reducers output will be sorted. Better performance is traded for total ordering.

Optimizing Hive

42Mu Sigma Confidential

Optimize Auto Join Conversion

When auto join is enabled, there is no longer a need to provide the map-join hints in the query.

The auto join option can be enabled with two configuration parameters:

– set hive.auto.convert.join.noconditionaltask = true;

set hive.auto.convert.join.noconditionaltask.size = 10000;

– The default for hive.auto.convert.join.noconditionaltask is false which means auto conversion is disabled.

– The size configuration enables the user to control what size table can fit in memory. This value represents
the sum of the sizes of tables that can be converted to hashmaps that fit in memory.

Optimizing Hive

43Mu Sigma Confidential

Auto Conversion to SMB Map Join

Sort-Merge-Bucket (SMB) joins can be converted to SMB map joins as well. SMB joins are

used wherever the tables are sorted and bucketed.

The join boils down to just merging the already sorted tables, allowing this operation to be

faster than an ordinary map-join. However, if the tables are partitioned, there could be a slow

down as each mapper would need to get a very small chunk of a partition which has a single

key.

The following configuration settings enable the conversion of an SMB to a map-join SMB:

– set hive.auto.convert.sortmerge.join=true;

set hive.optimize.bucketmapjoin = true;

set hive.optimize.bucketmapjoin.sortedmerge = true;

set hive.auto.convert.sortmerge.join.noconditionaltask=true;

Optimizing Hive

44Mu Sigma Confidential

Queries that Sample Data

For very large data sets, sometimes you want to work with a representative sample of a query

result, not the whole thing. Hive supports this goal with queries that sample tables organized

into buckets.

 In the following example, assume the numbers table has one number column with values 1-10.

– hive> SELECT * from numbers TABLESAMPLE(BUCKET 3 OUT OF 10 ON rand()) s;

2

4

– hive> SELECT * from numbers TABLESAMPLE(BUCKET 3 OUT OF 10 ON rand()) s;

7

10

Sampling Data

45Mu Sigma Confidential

Tuning – Controlling File and Split Size

Determining the optimal number of mappers and reducers depends on many variables, such

as the size of the input and the operation being performed on the data

 In order to change the average load for a reducer (in bytes):

– set hive.exec.reducers.bytes.per.reducer=<number>

 In order to limit the maximum number of reducers:

– set hive.exec.reducers.max=<number>

 In order to set a constant number of reducers:

– set mapred.reduce.tasks=<number>

Hive determines the number of reducers from the input size. This can be confirmed using the
dfs -count command

 It is a good idea to set this value in your $HIVE_HOME/conf/hive-site.xml. A suggested

formula is to set the no of reducers to the result of calculation:

– (Total Cluster Reduce Slots * 1.5) / (avg number of queries running)

» The 1.5 multiplier is a fudge factor to prevent underutilization of the cluster.

Hive Tuning

46Mu Sigma Confidential

Tuning - Limit

Hive has a configuration property to enable sampling of source data for use with LIMIT:

<property>

<name>hive.limit.optimize.enable</name>

<value>true</value>

<description>Whether to enable to optimization to try a smaller subset of data

for simple LIMIT first.</description>

</property>

Once the hive.limit.optimize.enable is set to true, two variables control its operation,

– hive.limit.row.max.size: When trying a smaller subset of data for simple LIMIT,how much size we
need to guarantee each row to have at least.

– hive.limit.optimize.limit.file: When trying a smaller subset of data for simple LIMIT,maximum
number of files we can sample

Hive Tuning

47Mu Sigma Confidential

Tuning – Parallel Execution

 If a job is running more stages in parallel, it will increase its cluster utilization

 Hive converts a query into one or more stages. Stages could be a MapReduce stage, a sampling stage, a
merge stage, a limit stage, or other possible tasks Hive needs to do.

 By default, Hive executes these stages one at a time. However, if more stages are run simultaneously, the
job may complete much faster.

Setting the property hive.exec.parallel to true enables parallel execution.

<property>

<name>hive.exec.parallel</name>

<value>true</value>

<description>Whether to execute jobs in parallel</description>

</property>

 You can use another property hive.exec.parallel.thread.number to control how many jobs at most

can be executed in parallel.

Hive Tuning

48Mu Sigma Confidential

Tuning – Dynamic Partitioning

 It is good to set the dynamic partition mode to strict in your hive

<property>

<name>hive.exec.dynamic.partition.mode</name>

<value>strict</value>

<description>In strict mode, the user must specify at least one static partition

in case the user accidentally overwrites all partitions.</description>

</property>

Then, increase the other relevant properties to allow queries that will create a large number of

dynamic partitions

– hive.exec.max.dynamic.partitions- Maximum number of dynamic partitions allowed to be
created in total

– hive.exec.max.dynamic.partitions.pernode-Maximum number of dynamic partitions allowed to
be created in each mapper/reducer node

Hive Tuning

49Mu Sigma Confidential

Future work in Hive

Stinger, Interactive query for Apache Hive

The Stinger Initiative is a broad, community-based effort to drive the future of Apache Hive,

delivering 100x performance improvements at petabyte scale with familiar SQL semantics.

Project Goals

– Speed: Deliver interactive query through 100 x
performance increases as compared to
Hive 10.

– Scale: The only SQL interface to
Hadoop designed for queries that scale
from Terabytes to Petabytes.

– SQL: Support the broadest array of SQL
semantics for analytic applications
running against Hadoop.

Hive Roadmap

Image Courtesy: w ww.hortonworks.com

50Mu Sigma Confidential

The Hive Ecosystem: Stronger Than Ever

The philosophy is to innovate SQL in Hadoop with 100% vendor-neutral Apache Foundation

software that welcomes contributions from anyone.

Although Hive 12 is not officially released yet, a lot of work has been flowing in from more

than 60 developers from many contributors in the community.

Image Courtesy: w ww.hortonworks.com

Hive Roadmap

51Mu Sigma Confidential

Exercises – Basic Hive querying

Using the datasets provided create the page, user, and page_views tables in Hive

– The user dataset has the fields id, name, and email

– The page dataset has the fields id, and name

– The page_views dataset has the fields user_id, page_id, date, and country

Using JOIN and GROUP BY clauses, find the total number of users who has visited all the pages

from each country

The output should be in the following format:

Canada 46
Belgium 54
……. ….

Exercises

52Mu Sigma Confidential

Exercises – Hive UDFs

Try to implement UDF for sine, cosine, tangent of a value (both integer and double)

– Hint: Use java.math.Math for the functions

Create a sample table by loading data from a CSV and use the above UDF on its values

Exercises

5353Mu Sigma Confidential

Hive Data Types and Semantics

Appendix

54Mu Sigma Confidential

Hive Data Types and Semantics

Image Courtesy: w ww.hortonworks.com

55Mu Sigma Confidential

Thank You

Chicago, IL

Bangalore, India

December, 2013

www.mu-sigma.com

Proprietary Information

"This document and its attachments are confidential. Any unauthorized copying, disclosure or distribution of the material is strictly prohibited"

http://www.nmhg.com/default.asp
http://www.nmhg.com/default.asp

