
0Mu Sigma Confidential

Chicago, IL

Bangalore, India

www.mu-sigma.com

Proprietary Information

"This document and its attachments are confidential. Anyunauthorized copying, disclosure or distribution of the material is strictly forbidden"

Chicago, IL

Bangalore, India

www.mu-sigma.com

Proprietary Information

"This document and its attachments are confidential. Anyunauthorized copying, disclosure or distribution of the material is strictly forbidden"

Do The Math

Introduction to Map-Reduce

January 25, 2012

1Mu Sigma Confidential

Knowledge sessions schedule

Date Session

Wed Jan 18 Introduction to Hadoop

Wed Jan 25 Introduction to Map-Reduce

Fri Jan 27 Introduction to RHadoop

Mon Jan 30 Introduction to Java and Mahout

Wed Feb 1 Introduction to Hive

Fri Feb 3 Introduction to Pig

Mon Feb 6 Lab session

Knowledge sessions schedule

* Sessions will include hands on exercises on need basis

22Mu Sigma Confidential

 Introduction to Distributed computing

Example: Word count using map-reduce

Key-value pairs – The core of map-reduce

The map-reduce paradigm – The step-by-step approach

The map phase – Extreme parallelism

Shuffling, Sorting – The invisible middle operations

The reduce phase – Bringing it all together

Examples and exercises

Agenda

3Mu Sigma Confidential

The concept of distributed computing arose in the 1960s as an offshoot of studies into operating

system architecture

The power of this method of computation derives from the virtues of parallelization – think of the

incremental advantage offered by every additional driving lane added to a busy road

A powerful idea ahead of it’s time, it took an explosion in data for it to be revisited seriously; as data

volumes grew, processing large data in a sequential manner became infeasible within any

appreciable amount of time

Example 1: Consider a very simple use-case: summing numbers (Reference: Slide 25)

– Assume it takes 𝑘 seconds to add two numbers

– From large historic dataset containing a trillion rows and “number of store visits” as one of it’s column, if we
wished to compute total store visits to date, that’s 𝑘 ×1012 seconds to sum the entire “number of store visits”
column

– But if we were to spread this data and this computation across 1000 machines, each summing across (only) a
billion rows of data, the time required to compute the sum over our column would look more like 𝑘 ×109

seconds

– A direct drop in computation time of three orders of magnitude

Distributed computation using multiple machines has been around
since the 60s

Introduction to Distributed computing

4Mu Sigma Confidential

Hadoop is an open-source programming framework for performing massively parallel processing

 It implements the map-reduce programming model – inspired from the map and fold programming

concepts in functional programming, map-reduce is a functional programming framework for

parallelized computation on large distributed data

The model provides the user with an abstraction over parallel computing with the majority of

computation being performed simply by defining the map and reduce functions

The user is buffered from implementation details like assigning data and computations to nodes,

failover implementations and other internal management tasks

 Ironically enough, the Hadoop implementation of map-reduce is in Java, a decidedly un-functional

programming language

Map-reduce programs can be written and used in Hadoop in languages apart from Java – R,

Perl, Python, Ruby, PHP are few examples

Overview of Map-Reduce in Hadoop

Introduction to Distributed computing

55Mu Sigma Confidential

 Introduction to Distributed computing

Example: Word count using map-reduce

Key-value pairs – The core of map-reduce

The map-reduce paradigm – The step-by-step approach

The map phase – Extreme parallelism

Shuffling, Sorting – The invisible middle operations

The reduce phase – Bringing it all together

Examples and exercises

Agenda

6Mu Sigma Confidential

Bear Deer Bear Car

Car River Car Bear
River Car River Deer

Deer River Car Deer

0x0001b Bear Deer Bear Car

0x0001b Car River Car Bear

0x0001b River Car River Deer

Input Read

Bear , 1

Deer , 1
Bear , 1

Car , 1

Car , 1

River , 1
Car , 1

Bear , 1

River , 1

Car , 1
River , 1

Deer , 1

Map Combine

Bear , 2

Deer , 1
Car , 1

Car , 2

River , 1
Bear , 1

River , 2

Car , 1
Deer , 1

ValueKey ValueKey ValueKey

Sort and Shuffle

Bear , 2

Bear , 1

ValueKey

Car , 1

Car , 2
Car , 1

Deer , 1

Deer , 1

River , 1

River , 2

Reduce

Bear , 3

ValueKey

Car , 4

Deer , 2

River , 3

Final output

Bear , 3

Deer , 2
Car , 4

River , 3

ValueKey

1 2 3 4

1
By default, the line address of every line is they

key and value is the contents of the line. These

Key-Value pairs will be the input to the map

function

2 Each Mapper will generate new Key-Value pairs

based on the map function, In this case new key

is the word and value is 1.

3 Key-Value pairs will be merged on the same key

before sending it to the reducer. In this case,

since word is the key, so all the key-value pairs

associated with same word are merged

4 Finally, the reducer function run on the values

associated to same key, and produces the

result

The over all map-reduce word-count process

Input Output

map <K1,V1> <K2,V2>

reduce <K2, List(V2)> <K3,V3>

Example: Word count using map-reduce

Example 2: Word count using map-reduce

77Mu Sigma Confidential

 Introduction to Distributed computing

Example: Word count using map-reduce

Key-value pairs – The core of map-reduce

The map-reduce paradigm – The step-by-step approach

The map phase – Extreme parallelism

Shuffling, Sorting – The invisible middle operations

The reduce phase – Bringing it all together

Examples and exercises

Agenda

8Mu Sigma Confidential

Key-value pairs – The core of map-reduce

Example 2 continued: Key-value pairs

Bear Deer Bear Car

Car River Car Bear
River Car River Deer

Deer River Car Deer

0x0001b Bear Deer Bear Car

0x0001b Car River Car Bear

0x0001b River Car River Deer

Input Read

Bear , 1

Deer , 1
Bear , 1

Car , 1

Car , 1

River , 1
Car , 1

Bear , 1

River , 1

Car , 1
River , 1

Deer , 1

Map Combine

Bear , 2

Deer , 1
Car , 1

Car , 2

River , 1
Bear , 1

River , 2

Car , 1
Deer , 1

ValueKey ValueKey ValueKey

Sort and Shuffle

Bear , 2

Bear , 1

ValueKey

Car , 1

Car , 2
Car , 1

Deer , 1

Deer , 1

River , 1

River , 2

Reduce

Bear , 3

ValueKey

Car , 4

Deer , 2

River , 3

Final output

Bear , 3

Deer , 2
Car , 4

River , 3

ValueKey

1 2 3 4

1
By default, the line address of every line is they

key and value is the contents of the line. These

Key-Value pairs will be the input to the map

function

2 Each Mapper will generate new Key-Value pairs

based on the map function, In this case new key

is the word and value is 1.

3 Key-Value pairs will be merged on the same key

before sending it to the reducer. In this case,

since word is the key, so all the key-value pairs

associated with same word are merged

4 Finally, the reducer function run on the values

associated to same key, and produces the

result

The over all map-reduce word-count process

Input Output

map <K1,V1> <K2,V2>

reduce <K2, List(V2)> <K3,V3>

9Mu Sigma Confidential

The idea behind key-value pairs has been around for about as long as the concept of distributed

computing

Just as the primary key in any normalized table is used to uniquely identify its associated row, the

key in a key value pair is used to uniquely identify its associated value

Within the context of Hadoop and map-reduce, however, keys needn’t be unique; duplication of

keys is in fact a “key” factor in the versatility of the map-reduce framework

 In the Hadoop implementation of map-reduce, the data types of both key and value must be

serializable by the framework (serialization is the process of converting a data structure into a

storable format)

Notes: Key-value pairs are the core of the Map-Reduce paradigm

Key-value pairs – The core of map-reduce

1010Mu Sigma Confidential

 Introduction to Distributed computing

Example: Word count using map-reduce

Key-value pairs – The core of map-reduce

The map-reduce paradigm – The step-by-step approach

The map phase – Extreme parallelism

Shuffling, Sorting – The invisible middle operations

The reduce phase – Bringing it all together

Examples and exercises

Agenda

11Mu Sigma Confidential

Bear Deer Bear Car

Car River Car Bear
River Car River Deer

Deer River Car Deer

0x0001b Bear Deer Bear Car

0x0001b Car River Car Bear

0x0001b River Car River Deer

Input Read

Bear , 1

Deer , 1
Bear , 1

Car , 1

Car , 1

River , 1
Car , 1

Bear , 1

River , 1

Car , 1
River , 1

Deer , 1

Map Combine

Bear , 2

Deer , 1
Car , 1

Car , 2

River , 1
Bear , 1

River , 2

Car , 1
Deer , 1

ValueKey ValueKey ValueKey

Sort and Shuffle

Bear , 2

Bear , 1

ValueKey

Car , 1

Car , 2
Car , 1

Deer , 1

Deer , 1

River , 1

River , 2

Reduce

Bear , 3

ValueKey

Car , 4

Deer , 2

River , 3

Final output

Bear , 3

Deer , 2
Car , 4

River , 3

ValueKey

1 2 3 4

1
By default, the line address of every line is they

key and value is the contents of the line. These

Key-Value pairs will be the input to the map

function

2 Each Mapper will generate new Key-Value pairs

based on the map function, In this case new key

is the word and value is 1.

3 Key-Value pairs will be merged on the same key

before sending it to the reducer. In this case,

since word is the key, so all the key-value pairs

associated with same word are merged

4 Finally, the reducer function run on the values

associated to same key, and produces the

result

The over all map-reduce word-count process

Input Output

map <K1,V1> <K2,V2>

reduce <K2, List(V2)> <K3,V3>

The map-reduce paradigm – The step-by-step approach

Example 2 continued: Map-reduce workflow

12Mu Sigma Confidential

The map-reduce (MR) workflow consists of the eight stages of read, map, partition,

combine, shuffle, compare, reduce and write

 In the reading phase, data is read from disk and converted into key-value pairs (𝑘𝑚,𝑖 , 𝑣𝑚,𝑖), so for

input data in a tabular format, each record could be converted into a key-value pair

Mapping logic is applied to each input key-value pair; it takes as input a key-value pair (𝑘𝑚,𝑖 , 𝑣𝑚,𝑖);

it outputs zero, one or more key-value pairs (𝑘𝑚,𝑜, 𝑣𝑚,𝑜)

Partitioning assigns mapper output key-value pairs to reducers – the default partitioner provided by

Hadoop implements a hash function for load balancing

Combining, if used, acts as “local reducing”; it takes as input a pair of key and list of values
(𝑘𝑚,𝑜, 𝑙𝑖𝑠𝑡(𝑣𝑚,𝑜)); it outputs zero, one or more key-value pairs (𝑘𝑐,𝑜, 𝑣𝑐,𝑜)

 In shuffling and sorting all mapper/combiner output key-value pairs and transmitted to the reducers

designated by the partitioner and sorted on the basis of the input key

Reducing logic is applied to each input key; it takes as input mapping output keys and lists of all

their associated values (𝑘𝑚,𝑜, 𝑙𝑖𝑠𝑡(𝑣𝑚,𝑜)); it outputs zero, one or more key-value pairs 𝑘𝑟,𝑜, 𝑣𝑟,𝑜
which are finally written back to disk

Notes: The map-reduce workflow

The map-reduce paradigm – The step-by-step approach

1313Mu Sigma Confidential

 Introduction to Distributed computing

Example: Word count using map-reduce

Key-value pairs – The core of map-reduce

The map-reduce paradigm – The step-by-step approach

The map phase – Extreme parallelism

Shuffling, Sorting – The invisible middle operations

The reduce phase – Bringing it all together

Examples and exercises

Agenda

14Mu Sigma Confidential

Bear Deer Bear Car

Car River Car Bear
River Car River Deer

Deer River Car Deer

0x0001b Bear Deer Bear Car

0x0001b Car River Car Bear

0x0001b River Car River Deer

Input Read

Bear , 1

Deer , 1
Bear , 1

Car , 1

Car , 1

River , 1
Car , 1

Bear , 1

River , 1

Car , 1
River , 1

Deer , 1

Map Combine

Bear , 2

Deer , 1
Car , 1

Car , 2

River , 1
Bear , 1

River , 2

Car , 1
Deer , 1

ValueKey ValueKey ValueKey

Sort and Shuffle

Bear , 2

Bear , 1

ValueKey

Car , 1

Car , 2
Car , 1

Deer , 1

Deer , 1

River , 1

River , 2

Reduce

Bear , 3

ValueKey

Car , 4

Deer , 2

River , 3

Final output

Bear , 3

Deer , 2
Car , 4

River , 3

ValueKey

1 2 3 4

1
By default, the line address of every line is they

key and value is the contents of the line. These

Key-Value pairs will be the input to the map

function

2 Each Mapper will generate new Key-Value pairs

based on the map function, In this case new key

is the word and value is 1.

3 Key-Value pairs will be merged on the same key

before sending it to the reducer. In this case,

since word is the key, so all the key-value pairs

associated with same word are merged

4 Finally, the reducer function run on the values

associated to same key, and produces the

result

The over all map-reduce word-count process

Input Output

map <K1,V1> <K2,V2>

reduce <K2, List(V2)> <K3,V3>

Example 2 continued: Mapping & combining

The map phase – Extreme parallelism

15Mu Sigma Confidential

Notes: Achieving efficiency with mapping and combining

The map phase – Extreme parallelism

Many mappers run independently of each other on each machine in parallel

Each mapper reads in one key-value pair and writes out zero, one or more key-value pairs; in

most cases, the value of the mapper input key is irrelevant since it doesn’t get used

Mappers run on the same machines as the input data – each mapper explicitly runs on local data,

Hadoop has no provision for mappers running in parallel to communicate with each other

Output from mappers get collected in an in-memory buffer where all values corresponding to the

same key are collected into lists; each time this buffer is close to full, the sorted output is written to

disk OR passed on to a combiner, freeing up the buffer again

A lot of data transformation tasks can be achieved using only mappers in conjunction with identity

reducers, reducers that simply pass on the key-value pairs that they receive as input such that the

output is another dataset consisting of some transformed form of the rows from the input dataset

16Mu Sigma Confidential

Notes: Achieving efficiency with mapping and combining
continued..

The map phase – Extreme parallelism

 In cases where both mappers and reducers are required, a combiner can be used to locally reduce

the data before being passed on to the reducers,

This can potentially significantly reduce the amount of data transmitted in the shuffling phase

However, since it is called every time the mapper output memory buffer is close to full, it is not

always guaranteed that the combiner, even if specified, will be used, since the buffer may never

fill up sufficiently

 In cases when the reducing logic is both commutative (𝑎 + 𝑏 = 𝑏 + 𝑎) and associative (𝑎 + 𝑏 +
𝑐 = 𝑎 + (𝑏 + 𝑐)), the combiner used can be the same as the reducer

However consider the simple example where the reducer sums over the list of all input values and

adds a constant value to this sum

A reducer implementing such logic will not be usable as a combiner

1717Mu Sigma Confidential

 Introduction to Distributed computing

Example: Word count using map-reduce

Key-value pairs – The core of map-reduce

The map-reduce paradigm – The step-by-step approach

The map phase – Extreme parallelism

Shuffling, sorting – The invisible middle operations

The reduce phase – Bringing it all together

Examples and exercises

Agenda

18Mu Sigma Confidential

Bear Deer Bear Car

Car River Car Bear
River Car River Deer

Deer River Car Deer

0x0001b Bear Deer Bear Car

0x0001b Car River Car Bear

0x0001b River Car River Deer

Input Read

Bear , 1

Deer , 1
Bear , 1

Car , 1

Car , 1

River , 1
Car , 1

Bear , 1

River , 1

Car , 1
River , 1

Deer , 1

Map Combine

Bear , 2

Deer , 1
Car , 1

Car , 2

River , 1
Bear , 1

River , 2

Car , 1
Deer , 1

ValueKey ValueKey ValueKey

Sort and Shuffle

Bear , 2

Bear , 1

ValueKey

Car , 1

Car , 2
Car , 1

Deer , 1

Deer , 1

River , 1

River , 2

Reduce

Bear , 3

ValueKey

Car , 4

Deer , 2

River , 3

Final output

Bear , 3

Deer , 2
Car , 4

River , 3

ValueKey

1 2 3 4

1
By default, the line address of every line is they

key and value is the contents of the line. These

Key-Value pairs will be the input to the map

function

2 Each Mapper will generate new Key-Value pairs

based on the map function, In this case new key

is the word and value is 1.

3 Key-Value pairs will be merged on the same key

before sending it to the reducer. In this case,

since word is the key, so all the key-value pairs

associated with same word are merged

4 Finally, the reducer function run on the values

associated to same key, and produces the

result

The over all map-reduce word-count process

Input Output

map <K1,V1> <K2,V2>

reduce <K2, List(V2)> <K3,V3>

Example 2 continued: Shuffling and sorting

Shuffling, Sorting - The invisible middle operations

19Mu Sigma Confidential

Notes: Shuffling and sorting – transferring data from mappers to
reducers

Shuffling, Sorting - The invisible middle operations

Key-value pairs that mappers output are transmitted within the cluster to the machines running

reducers the reducers they’ve been assigned to by the partitioner

While it is “invisible” to the end-user, from the perspective of the time taken to run an MR job, this

phase is a major component since this is where data is being communicated between different

machines

Example 1: Consider again the summing example

– Without a combiner, the shuffling phase would effectively end up transmitting all 999 billion rows worth of data
on 999 machines onto one machine and the reducer running on this machine would then be responsible for
summing a trillion numbers

– Assume it takes 𝑘 seconds to transmit a single key-value pair

– That then implies a total processing time of around 𝑘 + 𝑛 × 1012 seconds to run the process in its entirety

Sorting of the mapper output keys occurs before reducing and after shuffling on the machines

running reducers

Because of this sorting, mapper output keys must be comparable

2020Mu Sigma Confidential

 Introduction to Distributed computing

Example: Word count using map-reduce

Key-value pairs – The core of map-reduce

The map-reduce paradigm – The step-by-step approach

The map phase – Extreme parallelism

Shuffling, Sorting – The invisible middle operations

The reduce phase – Bringing it all together

Examples and exercises

Agenda

21Mu Sigma Confidential

Bear Deer Bear Car

Car River Car Bear
River Car River Deer

Deer River Car Deer

0x0001b Bear Deer Bear Car

0x0001b Car River Car Bear

0x0001b River Car River Deer

Input Read

Bear , 1

Deer , 1
Bear , 1

Car , 1

Car , 1

River , 1
Car , 1

Bear , 1

River , 1

Car , 1
River , 1

Deer , 1

Map Combine

Bear , 2

Deer , 1
Car , 1

Car , 2

River , 1
Bear , 1

River , 2

Car , 1
Deer , 1

ValueKey ValueKey ValueKey

Sort and Shuffle

Bear , 2

Bear , 1

ValueKey

Car , 1

Car , 2
Car , 1

Deer , 1

Deer , 1

River , 1

River , 2

Reduce

Bear , 3

ValueKey

Car , 4

Deer , 2

River , 3

Final output

Bear , 3

Deer , 2
Car , 4

River , 3

ValueKey

1 2 3 4

1
By default, the line address of every line is they

key and value is the contents of the line. These

Key-Value pairs will be the input to the map

function

2 Each Mapper will generate new Key-Value pairs

based on the map function, In this case new key

is the word and value is 1.

3 Key-Value pairs will be merged on the same key

before sending it to the reducer. In this case,

since word is the key, so all the key-value pairs

associated with same word are merged

4 Finally, the reducer function run on the values

associated to same key, and produces the

result

The over all map-reduce word-count process

Input Output

map <K1,V1> <K2,V2>

reduce <K2, List(V2)> <K3,V3>

Example 2 continued: Reducing & writing out

The reduce phase – Bringing it all together

22Mu Sigma Confidential

Notes: The last phase in the MR process depends on how the
input has been mapped

The reduce phase – Bringing it all together

Each reducer reads in a pair of one key and list of all it’s associated values and writes out zero,

one or more key-value pair

Since each reducer takes as input all the values associated with a mapper output key, reducers

can also run in parallel, but they cannot run before all mappers have completed running

One or more reducers can be run in a MR job, often depending on run-time considerations, but the

idea of “more reducer the merrier” should be approached with care

Example 1 continued: In the summing example

– All the mappers write out the same key, so it doesn’t make sense to run more than one reducer

– However if we now wish to take subtotals of the “number of store visits” column across levels of
another column, we can pass the rows of that column as the mapper output keys and the rows of
“number of store visits” to be summed as the mapper output values

A lot of data summarization tasks can be achieved using only reducers in conjunction with identity

mappers, mappers that simply pass on the key-value pairs that they receive as input such that the

computed output is some aggregation over the input rows

2323Mu Sigma Confidential

 Introduction to Distributed computing

Example: Word count using map-reduce

Key-value pairs – The core of map-reduce

The map-reduce paradigm – The step-by-step approach

The map phase – Extreme parallelism

Shuffling, Sorting – The invisible middle operations

The reduce phase – Bringing it all together

Examples and exercises

Agenda

24Mu Sigma Confidential

Example 1: Problem statement

Consider data that tracks store daily visits at all outlets of a retail chain. Sample in Table A:

– How would you compute total store visits across all stores?

– How would you compute total store visits for all stores after
31 January 2011?

– How would you compute store-wise total visits after
31 January 2011 for each store?

– How would you sort this dataset on store?

Consider another dataset that tracks total number of sales

made each day for each store. Sample in Table B:

– how would you merge the two tables so that store visits and total
number of sales made can be viewed side-by-side?

Examples

Visit Date Store Store

visits

2011-11-30 A 128

2011-11-23 A 34

2012-01-11 B 435

2010-09-15 A 786

2012-01-19 B 93

2012-01-14 B 847

2010-11-30 A 297

2010-07-25 B 218

2011-07-04 B 454

2010-10-19 A 23

2010-02-01 B 634

2011-11-26 A 9

2011-08-18 A 12

… … …

Visit Date Store #

Sales

2011-11-30 A 46

2011-11-23 A 15

2012-01-11 B 223

2010-09-15 A 497

Table A

Table B

25Mu Sigma Confidential

 In the example summing a trillion rows, let us now add one more constraint

– We wish to now sum the values of “number of store visits” for only those rows that correspond to a visit date
after 31 January, 2011 on the basis of the “visit date” column

– Assume that “visit date” is the first column and “number of store visits” is the third column

 In pseudo-code, the mapper, combiner and reducer would look something like:

let map(key, value) =

if (yyyymmdd(value[1]) > d"2011-01-31") emit(const, value[3])

let combine(key, values) =

foreach v in values:

sum += v

emit(key, sum)

let reduce(key, values) = combine

Notice that the reducer is implementing the same logic as the combiner, only that the values that it

is summing across are all the locally computed subtotals that are output from each combiner

Example 1: Pseudo-code for filtering and summation using Map-
Reduce

Examples

26Mu Sigma Confidential

 In the example summing a trillion rows, let us now add a further constraint

– we wish to now compute monthly subtotals of store-wise store visits for all visits after 31 January 2011

– The “store” column contains string identifiers for stores and is the second column

 in pseudo-code the mapper, combiner and reducer would look something like:

let map(key, value) =

if (yyyymmdd(value[1]) > d"2011-01-31")

emit(concatenate(year(value[1]), "-", month(value[1]), "-", value[2]), value[3])

let combine(key, values) =

foreach v in values:

sum += v

emit(key, sum)

let reduce(key, values) = combine(key, values)

Note that the reducer is still the same as the combiner, only that the values that it is summing

across are all the locally computed subtotals that are output from each combiner corresponding

to the same combiner output key

Example 1: Pseudo-code for filtering and computing monthly store-
wise subtotals using Map-Reduce

Examples

27Mu Sigma Confidential

Visit Date Store Store

visits

2011-11-30 A 128

2011-11-23 A 34

2012-01-11 B 435

2010-09-15 A 786

2012-01-19 B 93

2012-01-14 B 847

2010-11-30 A 297

.

.

.

.

.

.

2010-02-01 B 634

2011-11-26 A 9

2011-08-18 A 12

Input Data Mapping

Node 1

Node 2

Node 1000

Reducing

2011-11-A, 128

2011-11-A, 34

2012-01-B,435

2012-01-B, 93

2012-01-B, 847

2011-11-A, 9

2011-11-A, 12

Combining

2011-11-A, 162

2012-01-B, 435

2012-01-B, 940

2011-11-A, 21

2012-01-B, 1375

2012-11-A, 162

Examples

Example 1: Filtering and computing monthly subtotals explained
visually

28Mu Sigma Confidential

Example 1: Pseudo-code for sorting the table using Map-Reduce

Examples

For sorting a dataset on the values of the first column, the MR pseudo-code would look something

like:

let map(key, value) =

emit(value[2]), value)

let reduce(key, values) =

foreach v in values:

emit(key, v)

Since Hadoop sorts the reducer input keys before running the reducer, we leverage this property

by simply setting the mapper output key to the value of the column we wish to sort on

29Mu Sigma Confidential

Example 1: Pseudo-code for joining two tables using Map-Reduce

Examples

For joining two datasets, A and B on the second column in both, the MR pseudo-code would look

something like:

let map(key, value) =

emit(value[2]), concatenate(name(input), "-", as.character(value)))

let reduce(key, values) =

foreach v in values:

if (splitString(v, "-")[1] == "A")

aData = splitString(v, "-")[-1]

exit foreach

foreach v in values:

if (splitString(v, "-")[1] != "A")

emit(key, concatenate(splitString(v, "-")[-1], “,", aData))

We use the mapper to group all rows from tables A and B corresponding to a store by setting the

mapper output key as the store and since all values corresponding to a mapper output key are sent

to one reducer

We then locally find the value corresponding to dataset A and concatenate that value with all other

values (which will then be from dataset B)

3030Mu Sigma Confidential

Exercises

31Mu Sigma Confidential

1) The trickiness of parallelization –Averaging

Given the following data

Using the map-reduce framework, how would you calculate the average weekly customers by store

for available data

Store Week No of customers

A 1 300

A 2 150

B 1 200

B 2 100

C 1 250

C 2 50

A 3 500

A 4 400

B 3 350

C 3 450

Node 1

Node 2

Exercises

32Mu Sigma Confidential

2) Linear-algebra in map-reduce (hint: getting started with OLS)

Given the following matrices

What are the dimensions and values of 𝑨𝑇𝑨, 𝑩𝑇𝑩 and 𝑪𝑇𝑪 ?

 Is 𝑨𝑇𝑨 = 𝑩𝑇𝑩 +𝑪𝑇𝑪 ?

 Is there any information lost when transforming from 𝑨 to 𝑨𝑇𝑨 ?

What if 𝑨 had a billion rows and a hundred columns? Would this sort of approach perhaps be

helpful when trying to perform OLS? (Hint: 𝑿𝑇𝑿𝜷 = 𝑿𝑇𝒚)

𝑨 =

1 2
3 4
5 6
7 8
9 10

𝑩 =
1 2
3 4
5 6

𝑪 =
7 8
9 10

Exercises

33Mu Sigma Confidential

Closing thoughts – limitations of Map-Reduce

Given the data shown to the right, how can you compute a

running total of the rows in map-reduce?

Not all computations are easily parallelized

As a thumb-rule, computations for which a divide and

conquer scheme can be devised are amenable to map-

reduce

As another thumb-rule, computations that inherently serial in

nature and not of complexity type NC are not amenable to

map-reduce

– which is not to say they cannot be performed in a map-reduce
framework,

– it just means that the reductions in processing time that arise out of
parallel computation in a map-reduce framework might not always
be realizable in these cases

Problems like linear-programming, inversion of large dense

matrices, agent-based methods are not easily parallelizable

Node 1

Node 2

Data

1

2

3

4

5

6

7

8

9

10

Closing thoughts - Limitation of Map-Reduce

34Mu Sigma Confidential

Reference material

On the Internet

– http://wiki.apache.org/hadoop/HadoopMapReduce

– http://code.google.com/edu/parallel/mapreduce-tutorial.html

– http://en.wikipedia.org/wiki/MapReduce

– http://developer.yahoo.com/hadoop/tutorial/module4.html

– http://hadoop.apache.org/common/docs/current/mapred_tutorial.html

– http://vimeo.com/3584536

– http://www.cloudera.com/videos/programming_with_hadoop

– http://www.cloudera.com/videos/mapreduce_algorithms

– Google videos on Cluster Computing and Map Reduce

» Lecture 1 - http://www.youtube.com/watch?v=yjPBkvYh-ss&feature=relmfu

» Lecture 2 - http://www.youtube.com/watch?v=-vD6PUdf3Js&feature=relmfu

» Lecture 3 - http://www.youtube.com/watch?v=5Eib_H_zCEY&feature=relmfu

» Lecture 4 - http://www.youtube.com/watch?v=1ZDybXl212Q&feature=relmfu

» Lecture 5 - http://www.youtube.com/watch?v=BT-piFBP4fE&feature=relmfu

Textbooks

– Data-Intensive Text Processing with Map Reduce by Jimmy Lin

– Hadoop: The Definitive Guide by Tom White.

Reference

http://wiki.apache.org/hadoop/HadoopMapReduce
http://code.google.com/edu/parallel/mapreduce-tutorial.html
http://en.wikipedia.org/wiki/MapReduce
http://hadoop.apache.org/common/docs/current/mapred_tutorial.html
http://hadoop.apache.org/common/docs/current/mapred_tutorial.html
http://vimeo.com/3584536
http://www.cloudera.com/videos/programming_with_hadoop
http://www.cloudera.com/videos/mapreduce_algorithms
http://www.youtube.com/watch?v=yjPBkvYh-ss&feature=relmfu
http://www.youtube.com/watch?v=-vD6PUdf3Js&feature=relmfu
http://www.youtube.com/watch?v=5Eib_H_zCEY&feature=relmfu
http://www.youtube.com/watch?v=1ZDybXl212Q&feature=relmfu
http://www.youtube.com/watch?v=BT-piFBP4fE&feature=relmfu

35Mu Sigma Confidential

Thank You

Chicago, IL

Bangalore, India

January 25, 2012

www.mu-sigma.com

Proprietary Information

"This document and its attachments are confidential. Any unauthorized copying, disclosure or distribution of the material is strictly prohibited"

http://www.nmhg.com/default.asp
http://www.nmhg.com/default.asp

