
0Mu Sigma Confidential

Chicago, IL

Bangalore, India

www.mu-sigma.com

Proprietary Information

"This document and its attachments are confidential. Anyunauthorized copying, disclosure or distribution of the material is strictly forbidden"

Chicago, IL

Bangalore, India

www.mu-sigma.com

Proprietary Information

"This document and its attachments are confidential. Anyunauthorized copying, disclosure or distribution of the material is strictly forbidden"

Do The Math

Introduction to Pig

December, 2013

11Mu Sigma Confidential

Pig – An Overview

Pig Data Model

 Introduction to Pig Latin

Executing Pig

Optimizing Pig

Control Stuctures

Pig Examples

Exercises

Agenda

2Mu Sigma Confidential

Pig Philosophy

Apache Pig, developed by Yahoo, is a platform for analyzing large data sets that uses Hadoop

map-reduce framework and HDFS.

 It provides an engine for executing data flows in parallel on Hadoop

Pigs Eat Anything

– Pig can operate on data whether it has metadata or not. It can operate on data that is relational, nested, or

unstructured.

Pigs Live Anywhere

– Pig is intended to be a language for parallel data processing. It is not tied to one particular parallel framework.

Pigs Are Domestic Animals

– Pig is designed to be easily controlled and modified by its users. Pig allows integration of user code where ever

possible, so it currently supports user defined field transformation functions, user defined aggregates, and user

defined conditionals.

Introduction

3Mu Sigma Confidential

Pig Use cases

Introduction

Traditional Extract Transform Load (ETL)

Data pipelines

– A common example is web companies bringing in logs from their web servers, cleansing the data, and pre

computing common aggregates before loading it into their data warehouse.

Research on raw data

– Pig can operate in situations where the schema is unknown or incomplete or inconsistent and since it can

easily manage nested data, researchers who want to work on data before it has been cleaned often prefer

Pig.

 Iterative processing

– Pig is strong contender for designing iterative based models. Suppose new data comes in every five

minutes in your model, which needs a join to be done against the whole model. This step consists of

inserts, updates, and deletes on the entire model. It is possible and reasonably convenient to express this

combination in Pig Latin.

4Mu Sigma Confidential

Pig Architecture

tweetinfotable = LOAD 'pig/tweetinfo.csv'

using PigStorage(',') AS
(statusid,userid,tweettext,creationdate);

filtered1 = filter tweetinfotable by
creationdate > '2010-12-10 00:00:00'

AND creationdate < '2010-12-20
00:00:00';

final1 = foreach filtered1 generate

statusid,tweettext,creationdate;

dump final1;

Pig Latin
Compiler

M/R

M/R

M/RPig Latin Script

Sequences

of

MR

codes

Hadoop [MapReduce + HDFS]

Pig's infrastructure layer consists of

– a compiler that produces sequences of Map-

Reduce programs

– Pig's language layer currently consists of a

textual language called Pig Latin

– Execution environment that allows user to

submit Pig jobs. There are currently 2

environments – one local execution using local

system’s JVM, second distributed execution

using Hadoop cluster

– includes operators for many of the traditional

data operations (load, store, join, sort, filter,

etc.) as well as the ability for users to develop

their own functions for reading, processing, and

writing data

Introduction

55Mu Sigma Confidential

Pig – An Overview

Pig Data Model

 Introduction to Pig Latin

Executing Pig

Optimizing Pig

Control Stuctures

Pig Examples

Exercises

Agenda

6Mu Sigma Confidential

Pig comes with set of Simple to Complex Data Types

Pig Data Model

Category Type Description Literal example

Numeric int 32-bit signed integer 1

long 64-bit signed integer 1L

float 32-bit floating-point number 1.0F

double 64-bit floating-point number 1.0

Text format chararray Character array in UTF-16 'a'

Binary bytearray Byte array

Complex tuple Sequence of fields of any type (1,‘Java')

bag An unordered collection of tuples, possibly
with duplicates

{(1,‘Java'),(2,’R’)}

map A set of key-value pairs. Keys must be
character arrays; values may be any type

['a‘ # ‘Java']

7Mu Sigma Confidential

Pig Support for different Arithmetic operators (+. - , *, /)

bag tuple map int long float double chararray bytearray

bag X X X X X X X X X

tuple X X X X X X X X

map X X X X X X X

int int long float double X cast as int

long long float double X cast as long

float float double X cast as float

double double X cast as double

chararray X X

bytearray cast as double

int long bytearray

int int long cast as int

long long cast as long

bytearray error

Pig Support for Modulus Operator (%)

Pig Data Model

8Mu Sigma Confidential

Pig Complex Data types - tuple

 tuple

– A tuple can be considered as an ordered set of fields.

– Syntax - (field [, field …])

Terms

– () - A tuple is enclosed in parentheses ().

– Field - A piece of data. A field can be any data type (including tuple and bag).

Usage

– You can think of a tuple as a row with one or more fields, where each field can be any data type and any field
may or may not have data. If a field has no data, then the following happens:

» In a load statement, the loader will inject null into the tuple.

» In a non-load statement, if a requested field is missing from a tuple, Pig will inject null.

Example

– In this example the tuple contains three fields:

– (Mary,20,3.5) : (Student:tuple (Student_name:chararray, Student_age:int, Student_GPA:double))

– A row containing 2 tuples - (4,5,9) (1,4,2)

(r1:tuple(r1a:int, r1b:int,r1c:int),r2:tuple(r2a:int,r2b:int,r2c:int)); 4 5 9 1 4 2

Pig Data Model

Field Tuple

Row

9Mu Sigma Confidential

Pig Complex Data types - bag

Bag

– A bag is a collection of tuples.

– Syntax: Inner bag - { tuple [, tuple …] }

Terms

– { } - An inner bag is enclosed in curly brackets { }.

– tuple - A tuple.

Usage

– A bag can have duplicate tuples.

– A bag can have tuples with differing numbers of fields. However, if Pig tries to access a field that does not
exist, a null value is substituted.

– A bag can have tuples with fields that have different data types. However, for Pig to effectively process
bags, the schemas of the tuples within those bags should be the same. For example, if half of the tuples
include chararray fields and while the other half include float fields, only half of the tuples will participate in
any kind of computation because the chararray fields will be converted to null.

Bags have two forms: outer bag (or relation) and inner bag.

Pig Data Model

10Mu Sigma Confidential

Pig Complex Data types – bag (contd.)

Example: Outer Bag

– A data once loaded is bag of tuples. You can think of this bag as an outer bag.

– Data

 Example: Inner Bag

– Now, suppose we group, data by the first field to form another dataset.

– In this example X is a relation or bag of tuples. The tuples in relation X have two fields. The first field is
type int. The second field is type bag; you can think of this bag as an inner bag.

1,5,6…..20

3,4,2…25

Mary,12.4.5

(1,5,6…..20)

(3,4,2…25)

(Mary,12.4.5)

Outer

bag

Pig

(101, 20, 2.5)

(102, 20, 3.5)

(101, 30, 5.6)

(101, 20, 3.4)

(103, 20, 2.5)

(102, 25, 4.5)

(101, { (101,20,2.5), (101,30,5.6), (101,20,3.4) })

(102, { (102.20,3.5), (102,25,4.5) })

(103, { (103.20,2.5) })

bag of tuples

Grouping on first

column

int Inner bag – containing series of tuples in a row

(comma separated)

Observe the curly braces { }

Pig Data Model

11Mu Sigma Confidential

Pig Complex Data types - Map

Map

– A map is a set of key value pairs.

– Syntax (<> denotes optional) [key#value <, key#value …>]

Terms

– [] - Maps are enclosed in straight brackets [].

– # - Key value pairs are separated by the pound sign #.

– Key - Must be chararray data type. Must be a unique value.

– Value - Any data type.

Usage

– Key values within a relation must be unique.

Example

– In this example the map includes two key value pairs.

– [name#John, age#30]

Pig Data Model

12Mu Sigma Confidential

Relations, Bags, Tuples, Fields

Pig Latin statements work with relations. A relation can be defined as follows:

– A relation is a bag (more specifically, an outer bag).

– A bag is a collection of tuples.

– A tuple is an ordered set of fields.

– A field is a piece of data.

A Pig relation is a bag of tuples. A Pig relation is similar to a table in a relational database,

where the tuples in the bag correspond to the rows in a table.

Unlike a relational table, however, Pig relations don't require that every tuple contain the same

number of fields or that the fields in the same position (column) have the same type.

Relations are unordered which means there is no guarantee that tuples are processed in any

particular order. Furthermore, processing may be parallelized in which case tuples are not

processed according to any total ordering.

Pig Data Model

1313Mu Sigma Confidential

Pig – An Overview

Pig Data Model

 Introduction to Pig Latin

Executing Pig

Optimizing Pig

Control Stuctures

Pig Examples

Exercises

Agenda

14Mu Sigma Confidential

Pig Latin Statements

A Pig Latin statement is an operator that takes a relation as input and produces another

relation as output.

– A LOAD statement reads data from the file system.

– A series of "transformation" statements process the data.

– A STORE statement writes output to the file system; or, a DUMP statement displays output to the screen.

Referencing Relations

– Relations are referred to by name (or alias). Names are assigned by you as part of the Pig Latin
statement. In this example the name (alias) of the relation is Student_Data.

Student_Data = LOAD ‘/user/hadoop/student.txt' USING PigStorage() AS (name:chararray, age:int, gpa:double);

DUMP Student_Data;

– Sample Output:

(Peter,18,4.5) ====> Each tuple/row is referred by (name, age and gpa)

(Samuel,19,3.8)

(Bill,20,3.9)

(Joe,18,3.8)

Pig Latin

15Mu Sigma Confidential

Pig Referencing

Referencing Fields

– Fields are referred to by positional notation or by name (alias).

– Positional notation is generated by the system. Positional notation is indicated with the dollar sign ($) and
begins with zero (0); for example, $0, $1, $2.

– Names are assigned by you using schemas (or, in the case of the GROUP operator and some functions, by the
system). You can use any name that is not a Pig keyword; for example, f1, f2, f3 or a, b, c or name, age, gpa.

Student_Data = LOAD ‘/user/hadoop/tweet.txt' USING PigStorage() AS (username:chararray, userid:int, friendcount:int);

1st Field 2nd Field 3rd Field

Data type chararray int int

Positional notation (system-generated) $0 $1 $2

Possible name (user-generated) username userid friendcount

Field value Peter 188291 35(Peter,188291,35)

Pig Latin - Introduction

16Mu Sigma Confidential

Pig Referencing

Referencing Fields that are Complex Data Types

– As noted, the fields in a tuple can be any data type, including the complex data types: bags, tuples, and
maps.

– Use the schemas for complex data types to name fields that are complex data types.

– Use the dereference operator (dot operator) to reference and work with fields that are complex data types.

Example

– ((2,3,4),(5,3,9))

– r1.a = 2, r1.c = 4, r2.b = 3

– r1.$0 = 2, r2.$1 = 3

(r1:tuple (a:int,b:int,c:int),r2:tuple(a:int,b:int,c:int));

Operator Symbol

Tuple dereference tuple_name.field or tuple.(field,…)

bag dereference bag.id or bag.(id,…)

map dereference map#key

Pig Latin - Introduction

17Mu Sigma Confidential

LOAD operator

LOAD

– Loads data from the file system.

– Syntax - LOAD 'data' [USING function] [AS schema];

Terms

– 'data‘ - The name of the file or directory, in single quotes. If you specify a directory name, all the files in
the directory are loaded.

– USING (Keyword) - If the USING clause is omitted, the default load function PigStorage is used.

– Function - The load function.

» You can use a built-in function provided by pig. PigStorage is the default load function and does not need to be
specified (simply omit the USING clause).

» You can write your own load function if your data is in a format that cannot be processed by the built-in
functions.

– AS (Keyword)

– Schema - A schema using the AS keyword, enclosed in parentheses

» The loader produces the data of the type specified by the schema. If the data does not conform to the schema,
depending on the loader, either a null value or an error is generated.

– Note : [USING function] [As schema] – both are optional

Pig Latin - Operators

18Mu Sigma Confidential

Load Operator

Example

Student.txt (tab-separated) – Suppose its present on hadoop –

“/user/hadoop/TrainingDatasets/Pig/IntroductionToPig/Student”

Roy 20 4.5

Joy 30 2.5

Nick 25 4.0

Student.txt

Student_Data= Load ‘Student’ ;

Student_Data= Load ‘Student’ USING PigStorage(‘\t’) ;

Student_Data= Load ‘Student’ USING PigStorage(‘\t’) AS (name:chararray , age:int , gpa:double);

Pig Latin - Operators

19Mu Sigma Confidential

DUMP Operator

DUMP

– Dumps or displays results to screen.

– Syntax - DUMP alias;

Terms

– alias - The name of a relation.

Usage

– DUMP operator is used to display results on the console. It mainly provides interactivity by displaying the
results without any persistence.

– Mainly used for debugging.

– DUMP is not preferred for running production level scripts as it doesn’t make use of optimizations
provided by pig. We should use STORE instead of DUMP for production scripts.

Example:

A = LOAD ‘TwitterData' AS (name:chararray, userid:int, friendcount:int);

DUMP A;

(Jessy,18234,40)

(Joy,19234, 23)

(Bill, 23324.93)

Pig Latin - Operators

20Mu Sigma Confidential

FILTER OPERATOR

FILTER

– Allows you to get rid of unwanted data. Basically selects tuples/rows from a relation based on some given
condition.

– Syntax - alias = FILTER alias BY expression;

Terms

– Alias - The name of the relation.

– BY - Required keyword.

– Expression - A boolean expression.

Usage

– Use the FILTER operator to work with tuples or rows of data, similar to SELECT-WHERE clause in SQL

– FILTER is commonly used to select the data that you want; or, conversely, to filter out (remove) the data
you don’t want.

Example:

A = LOAD ‘TwitterData' AS (name:chararray, userid:int, friendcount:int);

B = FILTER A BY friendcount >25;

DUMP B;
(Jessy,18234,40)

(Bill, 23324.93)

(Jessy,18234,40)

(Joy,19234, 23)

(Bill, 23324.93)

After

Filtering

Pig Latin - Operators

21Mu Sigma Confidential

Filter Operator

Specifying Conditions.

– The logical connectives AND, OR and NOT can be used to build a condition from various atomic
conditions.

– Comparison Operators

 Thus, a somewhat more complicated condition can be

Y = FILTER A BY (f1 == '8') OR (NOT (f2*f3 > f1 OR f2>10));

Z = FILTER A BY (f1 matches ‘ *hadoop* ');

Operator Symbol

equal ==

not equal !=

less than <

greater than >

less than or equal to <=

greater than or equal to >=

pattern matching matches

Pig Latin - Operators

22Mu Sigma Confidential

FOREACH operator

FOREACH – Pig’s Projection Operator

– Mainly allows data transformations based on columns of data.

– foreach takes a set of expressions and applies them to every record in the data pipeline;

– Syntax alias = FOREACH { gen_blk | nested_gen_blk } [AS schema];

Terms

– alias - The name of relation (outer bag).

– gen_blk –

» FOREACH … GENERATE used with a relation (outer bag).

» SYNTAX : alias = FOREACH alias GENERATE expression [expression ….]

– nested_gen_blk

» FOREACH … GENERATE used with a inner bag.

» SYNTAX :

alias = FOREACH nested_alias {

alias = nested_op; [alias = nested_op; …]

GENERATE expression [, expression …]

};

Pig Latin - Operators

23Mu Sigma Confidential

FOREACH operator

Example:

Data = LOAD ‘AddressData’ AS (name:chararray, address:tuple(street:chararray,

city:chararray, country:chararray));

name_city = FOREACH Data GENERATE name, address.city ;

Dump name_city;

Austin (Mu-Sigma street, Bangalore, India)

Chitra (CMR street, Bangalore, India)

Kevin (Little Street, California, US)

After

ForEach

Pig Latin - Operators

(Austin, Bangalore)

(Chitra, Bangalore)

(Kevin, California)

Relation – containing 2 columns:

1. name – chararray

2. address – tuple:-

a. street:chararray

b. city:chararray

c. country:chararray

Relation – containing 2 columns:

1. name – chararray

2. city - chararray

24Mu Sigma Confidential

GROUP OPERATOR

Group:

– collects records with the same key together

– In SQL the group by clause works with aggregate functions. In Pig Latin there is no direct connection
between group and aggregate functions. Instead, group does exactly what it says. It collects all records
with the same value for the provided key together into a bag.

– After Grouping, the first field of the tuple will be given the name ‘group’ and has the value on which the
grouping has been performed, and the second field will have the same name as the ‘relation’ on which
group is performed. It will be transformed into a bag containing the tuples belonging to that group.

Example:

daily_data = load ‘StockData' as (stock_name, stock_price);

groupd_stock = group daily_data by stock_name;

count = foreach groupd_stock generate group, COUNT(daily_data);

FSZ , 20.3

FAS , 20.4

FAS , 24.3

FSZ , 32.3

FSZ , 23.5

FSZ, { (FSZ , 20.3), (FSZ , 32.3), (FSZ, 23.5) }

FAS , { (FAS , 20.4), (FAS, 24.3) }

FSZ, 3

FAS ,2

group

Count on grouped

data on whole bag

Pig Latin - Operators

group Bag named as ‘daily_data’

25Mu Sigma Confidential

ORDER BY OPERATOR

Order by

– The order statement does sorting on your data. Its use is similar to Group by.

– Data is sorted based on the types of the indicated fields

» chararray fields are sorted in lexical order

» Int / float / double are sorted numerically

» Byte array fields are sorted lexically

» For all data types, nulls are taken to be smaller than all possible values

» Sorting by maps, tuples, or bags produces errors

Example:

daily_data = load ‘StockData' as (stock_name, stock_price);

byprice = order daily_data by stock_price;

Dump byprice;

“order daily_data by stock_price desc” – will sort it in descending order

(FAZ,20.3)

(FAS,20.4)

(FSZ,23.5)

(FAS,24.3)

(FSZ,32.3)

FSZ , 20.3

FAS , 20.4

FAS , 24.3

FSZ , 32.3

FSZ , 23.5

Order By

Pig Latin - Operators

26Mu Sigma Confidential

JOIN OPERATOR

Join

– Join selects records from one input to put together with records from another input.

– This is done by indicating keys for each input. When those keys are equal the two rows are joined.
Records for which no match is found are dropped.

– You can do joining on mutiple keys also if you have common keys on different relations.

Example

A =load ‘StudentForJoin';

B =load ‘MarksForJoin';

C =Join A by $0, B by $0;

(101,RAM,101,ENG,90)

(101,RAM,101,MATHS,75)

(101,RAM,101,SCIENCE,45)

(102,JOE,102,ENG,42)

(102,JOE,102,MATHS,67)

(102,JOE,102,SCIENCE,87)

101 ENG 90

101 MATHS 75

101 SCIENCE 45

102 ENG 42

102 MATHS 67

102 SCIENCE 87

101 RAM

102 JOE

103 JOHN

Student

Marks

Joined Output

Pig Latin - Operators

27Mu Sigma Confidential

JOIN OPERATOR

Left Outer joins:

– In outer joins records that do not have a match on
the other side are included, with null values being
filled in for the missing fields

– A left outer join means records from the left side will
be included even if they do not have a match on the
right side.

A =Load ‘StudentForJoin' AS (id:int, name:chararray);

B =Load ‘MarksForJoin‘ AS (id:int,
subject:chararray,marks:int);

C =Join A by id left outer, B by id;

Dump C;

Right Outer joins:

– Right outer joins means records from the right side
will be included even if they do not have a match on
the left side.

Full Outer joins:

– A full outer join means records from both sides are
taken even when they do not have matches.

(101,RAM,101,ENG,90)

(101,RAM,101,MATHS,75)

(101,RAM,101,SCIENCE,45)

(102,JOE,102,ENG,42)

(102,JOE,102,MATHS,67)

(102,JOE,102,SCIENCE,87)

(103, JOHN, ,,)

101 ENG 90

101 MATHS 75

101 SCIENCE 45

102 ENG 42

102 MATHS 67

102 SCIENCE 87

101 RAM

102 JOE

103 JOHN

student

marks

Left outer Joined Output

Pig Latin - Operators

28Mu Sigma Confidential

Other Operators

– COGROUP

– CROSS

– DISTINCT

– LIMIT

– SAMPLE

– SPLIT

– STORE

– STREAM

– UNION

– DESCRIBE

– EXPLAIN

– ILLUSTRATE

– Eval Functions (AVG , CONCAT COUNT COUNT_STAR DIFF IsEmpty MAX MIN SIZE SUM TOKENIZE)

Pig Latin - Operators

http://pig.apache.org/docs/r0.7.0/piglatin_ref2.html
http://pig.apache.org/docs/r0.7.0/piglatin_ref2.html
http://pig.apache.org/docs/r0.7.0/piglatin_ref2.html
http://pig.apache.org/docs/r0.7.0/piglatin_ref2.html
http://pig.apache.org/docs/r0.7.0/piglatin_ref2.html
http://pig.apache.org/docs/r0.7.0/piglatin_ref2.html
http://pig.apache.org/docs/r0.7.0/piglatin_ref2.html
http://pig.apache.org/docs/r0.7.0/piglatin_ref2.html
http://pig.apache.org/docs/r0.7.0/piglatin_ref2.html
http://pig.apache.org/docs/r0.7.0/piglatin_ref2.html
http://pig.apache.org/docs/r0.7.0/piglatin_ref2.html
http://pig.apache.org/docs/r0.7.0/piglatin_ref2.html
http://pig.apache.org/docs/r0.7.0/piglatin_ref2.html
http://pig.apache.org/docs/r0.7.0/piglatin_ref2.html
http://pig.apache.org/docs/r0.7.0/piglatin_ref2.html
http://pig.apache.org/docs/r0.7.0/piglatin_ref2.html
http://pig.apache.org/docs/r0.7.0/piglatin_ref2.html
http://pig.apache.org/docs/r0.7.0/piglatin_ref2.html
http://pig.apache.org/docs/r0.7.0/piglatin_ref2.html
http://pig.apache.org/docs/r0.7.0/piglatin_ref2.html
http://pig.apache.org/docs/r0.7.0/piglatin_ref2.html
http://pig.apache.org/docs/r0.7.0/piglatin_ref2.html
http://pig.apache.org/docs/r0.7.0/piglatin_ref2.html
http://pig.apache.org/docs/r0.7.0/piglatin_ref2.html

2929Mu Sigma Confidential

Pig – An Overview

Pig Data Model

 Introduction to Pig Latin

Executing Pig

Optimizing Pig

Control Stuctures

Pig Examples

Exercises

Agenda

30Mu Sigma Confidential

Executing Pig

Local Mode

– Running Pig locally on your machine is referred to in Pig parlance as local mode. Local mode is useful for
prototyping and debugging your Pig Latin scripts.

– Pig scripts are generally stored with a .pig extension.

– (TestScript.pig)

daily_data = load ‘stock_data.csv' as (stock_name, stock_price);

byprice = order daily_data by stock_price;

Dump byprice;

– $PIG_HOME/bin/pig –x local (pig_file_to_be_executed)

– $PIG_HOME/bin/pig –x local TestScript.pig

Distributed Mode

– Running Pig distributed implies running on your hadoop cluster.

– To run the pig on hadoop, data input files need to be present on hdfs

– $PIG_HOME/bin/pig TestScript.pig (if you don’t provide –x local, pig automatically run on hadoop)

Running Pig

31Mu Sigma Confidential

Executing Pig

Grunt Shell

– Pig also comes with a interactive shell, called ‘Grunt’. It enables users to enter Pig Latin interactively, as
well as provides a shell for users to interact with HDFS or local filesystem.

– To execute Grunt Shell to use hadoop cluster:

$PIG_HOME/bin/pig

[main] INFO org.apache.pig.backend.hadoop.executionengine.HExecutionEngine - Connecting to hadoop file
system at: hdfs://lxe9700:54310

[main] INFO org.apache.pig.backend.hadoop.executionengine.HExecutionEngine - Connecting to map-reduce
job tracker at: lxe9700:54311

Grunt >

Grunt > A = Load ‘Table.txt’ as (name:chararray, marks:int);

Grunt > B = Group A by name;

Grunt > Dump B;

– Grunt will look for each command and prompts, if it find any syntactical errors.

– When Grunt finds DUMP or STORE command, then only your script get executed.

– To execute Grunt shell on local mode:

$PIG_HOME/bin/pig –x local

Running Pig

32Mu Sigma Confidential

Setting properties in pig

 Pig supports a number of Java properties that you can use to customize Pig behavior. You can retrieve a list
of the properties using the help properties command. All of these properties are optional

– $ pig -help properties

The following properties are supported:

 Logging:

– verbose=true|false; default is false.
brief=true|false; default is false.
debug=OFF|ERROR|WARN|INFO|DEBUG;
aggregate.warning=true|false

 Performance tuning:

– pig.cachedbag.memusage=<memfraction>;

– pig.skewedjoin.reduce.memusagea=<memfraction>;

– pig.exec.nocombiner=true|false;

– opt.multiquery=true|false;

– pig.tmpfilecompression=true|false;

– pig.tmpfilecompression.codec=lzo|gzip…etc

Miscellaneous:

– exectype=mapreduce|local..etc

Pig Properties

33Mu Sigma Confidential

Setting properties in pig

The set command

– Assigns values to keys used in Pig.

– All Pig and Hadoop properties can be set, either in the Pig script or via the Grunt command line.

Syntax Example

set key 'value' grunt> SET debug 'on'

grunt> SET job.name 'my job'

grunt> SET default_parallel 100

Pig Properties

34Mu Sigma Confidential

Shell Commands

 fs

– Invokes any FsShell command from within a Pig script or the Grunt shell

sh

– Invokes any sh shell command from within a Pig script or the Grunt shell.

Syntax Example

fs subcommand subcommand_parameters fs -mkdir /tmp

fs -copyFromLocal file-x file-y

fs -ls file-y

Syntax Example

sh subcommand subcommand_parameters grunt> sh ls

bigdata.conf

nightly.conf

grunt>

Shell Commands

35Mu Sigma Confidential

Shell Commands - Utility

clear

– Clear the screen of Pig grunt shell and position the cursor at top of the screen.

exec

– Run a Pig script.

help

– Prints a list of Pig commands or properties.

quit

– Quits from the Pig grunt shell.

kill

– Kills a job.

history

– Display the list of statements used so far.

Shell Commands

3636Mu Sigma Confidential

Pig – An Overview

Pig Data Model

 Introduction to Pig Latin

Executing Pig

Optimizing Pig

Control Stuctures

Pig Examples

Exercises

Agenda

37Mu Sigma Confidential

Pig Optimizations

 Before diving into the details of how to optimize your Pig Latin, it is worth understanding what items tend to
create bottlenecks in Pig jobs:

 Input size

– Hadoop’s parallelism reduces I/O bound but does not entirely remove it. You can always add more map tasks. Additional
maps take more time to start up, and MapReduce has to find more slots in which to run them. If you have twice as many
maps as you have slots to run them, it will take twice your average map time to run all of your maps.

 Shuffle size

– The data that is moved from your map tasks to your reduce tasks. All of this data has to be serialized, sorted, moved over
the network, merged, and deserialized. Also, the number of maps and reduces matters. So if there are m maps and r
reduces, the shuffle will have m x r networkconnections.

 Output size

– Every record written out by a MapReduce job has to be serialized, possibly com-pressed, and written to the store. When

the store is HDFS, it must be written to three separate machines before it is considered written.

 Intermediate results size

– Pig moves data between MapReduce jobs by storing it in HDFS. Thus the size of these intermediate results is affected by
the input size and output size factors mentioned previously.

 Memory

– Some calculations require your job to hold a lot of information in memory, for example, joins. If Pig cannot hold all of the
values in memory simultaneously, it will need to spill some to disk. This causes a significant slowdown, as records must be
written to and read from disk, possibly multiple times.

Pig Optimizations

38Mu Sigma Confidential

Pig Optimizations

Use Optimization

– Pig supports various optimization rules which are turned on by default.

» The pig.optimizer.rules.disabled pig property, which accepts a comma-separated list of optimization rules to
disable; the all keyword disables all non-mandatory optimizations. (e.g.: set pig.optimizer.rules.disabled
'ColumnMapKeyPrune';)

» The -t, -optimizer_off command-line options. (e.g.: pig -optimizer_off [opt_rule | all])

Use Types

– If types are not specified in the load statement, Pig assumes the type of =double= for numeric
computations. A lot of the time, your data would be much smaller, maybe, integer or long.

– Query 1

– A = load 'myfile' as (t, u, v);

B = foreach A generate t + u;

– Query 2

– A = load 'myfile' as (t: int, u: int, v);

B = foreach A generate t + u;

– The second query will run more efficiently than the first. In some of our queries with see 2x speedup.

Pig Optimizations

http://pig.apache.org/docs/r0.7.0/piglatin_ref1.html#Optimization+Rules

39Mu Sigma Confidential

Pig Optimizations

Project Early and Often

– Pig does not (yet) determine when a field is no longer needed and drop the field from the row. For
example, say you have a query like:

– A = load 'myfile' as (t, u, v);

B = load 'myotherfile' as (x, y, z);

C = join A by t, B by x;

D = group C by u;

E = foreach D generate group, COUNT($1);

There is no need for v, y, or z to participate in this query. And there is no need to carry both t

and x past the join, just one will suffice. Changing the query above to the query below will

greatly reduce the amount of data being carried through the map and reduce phases by pig.

–

A = load 'myfile' as (t, u, v);

A1 = foreach A generate t, u;

B = load 'myotherfile' as (x, y, z);

B1 = foreach B generate x;

C = join A1 by t, B1 by x;

C1 = foreach C generate t, u;

D = group C1 by u;

E = foreach D generate group, COUNT($1);

Pig Optimizations

40Mu Sigma Confidential

Pig Optimizations

Filter Early and Often

– As with early projection, in most cases it is beneficial to apply filters as early as possible to reduce the
amount of data flowing through the pipeline.

– Query 1

– A = load 'myfile' as (t, u, v);

B = load 'myotherfile' as (x, y, z);

C = filter A by t == 1;

D = join C by t, B by x;

E = group D by u;

F = foreach E generate group, COUNT($1);

– Query 2

– A = load 'myfile' as (t, u, v);

B = load 'myotherfile' as (x, y, z);

C = join A by t, B by x;

D = group C by u;

E = foreach D generate group, COUNT($1);

F = filter E by C.t == 1;

– The first query is clearly more efficient than the second one because it reduces the amount of data going
into the join.

Pig Optimizations

41Mu Sigma Confidential

Pig Optimizations

Drop Nulls Before a Join

 With the introduction of nulls, join and cogroup semantics were altered to work with nulls. The semantic for
cogrouping with nulls is that nulls from a given input are grouped together, but nulls across inputs are not
grouped together.

 Since flattening an empty bag results in an empty row, in a standard join the rows with a null key will always
be dropped.

– A = load 'myfile' as (t, u, v);

B = load 'myotherfile' as (x, y, z);

A1 = filter A by t is not null;

B1 = filter B by x is not null;

C = join A1 by t, B1 by x;

– Here the nulls will be dropped before the join. Since all null keys go to a single reducer, if your key is null
even a small percentage of the time the gain can be significant.

– In one test where the key was null 7% of the time and the data was spread across 200 reducers, we saw
a about a 10x speed up in the query by adding the early filters.

Pig Optimizations

42Mu Sigma Confidential

Pig Optimizations

Prefer DISTINCT over GROUP BY - GENERATE

 Using DISTINCT

– A = load 'myfile' as (t, u, v);

B = foreach A generate u;

C = distinct B; dump C;

 In pig initially, DISTINCT is just GROUP BY/PROJECT under the hood.

 From pig 0.2.0 it is not, and it is much faster and more efficient (depending on your key cardinality, up to 20x
faster in pig team's tests). Therefore, the use of DISTINCT is recommended over GROUP BY - GENERATE.

Pig Optimizations

43Mu Sigma Confidential

Pig Optimizations

Use the LIMIT Operator

– Often you are not interested in the entire output but rather a sample or top results. In such cases, using
LIMIT can yield a much better performance as we push the limit as high as possible to minimize the
amount of data travelling through the pipeline.

Use the PARALLEL Clause

– Use the PARALLEL clause to increase the parallelism of a job:

– PARALLEL sets the number of reduce tasks for the MapReduce jobs generated by Pig. The default value
is 1 (one reduce task).

– PARALLEL only affects the number of reduce tasks. Map parallelism is determined by the input file, one
map for each HDFS block.

– If you don’t specify PARALLEL, you still get the same map parallelism but only one reduce task.

Take Advantage of Join Optimizations

– Regular Join Optimizations

» Optimization for regular joins ensures that the last table in the join is not brought into memory but streamed
through instead. Optimization reduces the amount of memory used which means you can avoid spilling the
data and also should be able to scale your query to larger data volumes.

» small = load 'small_file' as (t, u, v);

large = load 'large_file' as (x, y, z);

C = join small by t, large by x;

Pig Optimizations

44Mu Sigma Confidential

Pig Optimizations – Specialized Joins

Replicated Joins

– Fragment replicate join is a special type of join that works well if one or more relations are small enough
to fit into main memory. In such cases, Pig can perform a very efficient join because all of the hadoop
work is done on the map side. In this type of join the large relation is followed by one or more small
relations

– In this example, a large relation is joined with two smaller relations. Note that the large relation comes first
followed by the smaller relations; and, all small relations together must fit into main memory, otherwise an
error is generated.

– big = LOAD 'big_data' AS (b1,b2,b3);

tiny = LOAD 'tiny_data' AS (t1,t2,t3);

mini = LOAD 'mini_data' AS (m1,m2,m3);

C = JOIN big BY b1, tiny BY t1, mini BY m1 USING 'replicated';

Pig Optimizations

45Mu Sigma Confidential

Pig Optimizations – Specialized Joins

Skewed Joins

– If the underlying data is sufficiently skewed, load imbalances will swamp any of the parallelism gains. In
order to counteract this problem, skewed join computes a histogram of the key space and uses this data
to allocate reducers for a given key.

– Skewed join does not place a restriction on the size of the input keys. It accomplishes this by splitting the
left input on the join predicate and streaming the right input. The left input is sampled to create the
histogram.

– big = LOAD 'big_data' AS (b1,b2,b3);

massive = LOAD 'massive_data' AS (m1,m2,m3);

C = JOIN big BY b1, massive BY m1 USING 'skewed';

Merge Joins

– Often user data is stored such that both inputs are already sorted on the join key. In this case, it is
possible to join the data in the map phase of a MapReduce job. This provides a significant performance
improvement compared to passing all of the data through unneeded sort and shuffle phases.

– Pig has implemented a merge join algorithm, or sort-merge join. It works on pre-sorted
data, and does not sort data for you

– C = JOIN A BY a1, B BY b1, C BY c1 USING 'merge';

Pig Optimizations

46Mu Sigma Confidential

Pig Optimizations – Specialized Joins

Merge-Sparse Joins

– Merge-Sparse join is a specialization of merge join. Merge-sparse join is intended for use when one of the
tables is very sparse, meaning you expect only a small number of records to be matched during the join.

– In tests this join performed well for cases where less than 1% of the data was matched in the join.

– a = load 'sorted_input1' using

org.apache.pig.piggybank.storage.IndexedStorage('\t', '0');

b = load 'sorted_input2' using
org.apache.pig.piggybank.storage.IndexedStorage('\t', '0');

c = join a by $0, b by $0 using 'merge-sparse';

store c into 'results';

Pig Optimizations

4747Mu Sigma Confidential

Pig – An Overview

Pig Data Model

 Introduction to Pig Latin

Executing Pig

Optimizing Pig

Control Stuctures

Pig Examples

Exercises

Agenda

48Mu Sigma Confidential

Control Structures

To enable control flow, you can embed Pig Latin statements and Pig commands in the Python

and JavaScript scripting languages using a JDBC-like compile, bind, run model.

– For Python, make sure the Jython jar is included in your class path.

– For JavaScript, make sure the Rhino jar is included in your classpath.

 Invocation Process

– You invoke Pig in the host scripting language through an embedded Pig object.

Compile:

– Compile is a static function on the Pig object and in its simplest form takes a fragment of Pig Latin that
defines the pipeline as its input:

– # COMPILE: compile method returns a Pig object that represents the pipeline

P = Pig.compile("""A = load '$in’; store A into '$out’;""")

Bind: Resolve the parameters during the bind call.

– input = "original”
output = "output”

BIND: bind method binds the variables with the parameters in the pipeline

and returns a BoundScript object

Q = P.bind({'in':input, 'out':output})

Pig Control Structures

49Mu Sigma Confidential

Control Structures contd…

Please note that all parameters must be resolved during bind. Having unbound parameters

while running your script is an error. Also note that even if your script is fully defined during

compile, bind without parameters still must be called.

Run: Bind call returns an instance of BoundScript object that can be used to execute the

pipeline. The simplest way to execute the pipeline is to call runSingle function. (However, as

mentioned later, this works only if a single set of variables is bound to the parameters.

Otherwise, if multiple set of variables are bound, an exception will be thrown if runSingle is

called.)

– result = Q.runSingle()

– The function returns a PigStats object that tells you whether the run succeeded or failed. In case of
success, additional run statistics are provided.

Pig Control Structures

5050Mu Sigma Confidential

Pig – An Overview

Pig Data Model

 Introduction to Pig Latin

Executing Pig

Pig Examples

Exercises

Agenda

51Mu Sigma Confidential

Word Count in Pig

lines = LOAD ‘WordCount' as(line:chararray);

tokens = FOREACH lines GENERATE TOKENIZE(line) as token;

words = FOREACH tokens generate FLATTEN(token) as word;

word_group = group words by word;

word_count = foreach word_groupgenerate group, COUNT(words) as num;

dump word_count;

Pig Examples

TOKENIZE splits the line into a field for each word.

FLATTEN will take the collection of records returned by TOKENIZE and produce a separate record for each one, calling the sing le field

in the record word.

Now group them together by each word.

52Mu Sigma Confidential

WordCount.pig - Illustrated

 lines = load 'data' as(line:chararray);

Dump:

– (Apache Hadoop Training)

– (Training on Pig)

– (Pig is part of Hadoop)

– (Hadoop is part of Apache)

 tokens = foreach lines generate TOKENIZE(line) as token;

Dump:

– ({(Apache),(Hadoop),(Training)})

– ({(Training),(on),(Pig)})

– ({(Pig),(is),(part),(of),(Hadoop)})

– ({(Hadoop),(is),(part),(of),(Apache)})

lines line:chararray

Pig is part of Hadoop
Hadoop is part of Apache

tokens token:bag{tuple_of_tokens:tuple(token:chararray)}

{(Pig), ..., (Hadoop)}

{(Hadoop), ..., (Apache)}

Pig Examples

53Mu Sigma Confidential

WordCount.pig - Illustrated

words = foreach tokens generate flatten(token) as word;

Dump:

– (Apache)

– (Hadoop)

– (Training)

– (Training)

– (on)

– (Pig)

– (Pig)

– (is)

– (part)

– (of)

– (Hadoop)

– (Hadoop)

– (is)

– (part)

– (of)

– (Apache)

words word:chararray

Pig
is
part
hadoop

Pig Examples

54Mu Sigma Confidential

WordCount.pig - Illustrated

word_group = group words by word;

Dump:

– (is,{(is),(is)})

– (of,{(of),(of)})

– (on,{(on)})

– (Pig,{(Pig),(Pig)})

– (part,{(part),(part)})

– (Hadoop,{(Hadoop),(Hadoop),(Hadoop)})

– (Apache,{(Apache),(Apache)})

– (Training,{(Training),(Training)})

word_count = foreach word_group generate group, COUNT(words) as num;

Dump:

– (is,2)

– (of,2)

– (on,1)

word_group group:chararray words:bag{:tuple(word:chararray)}

Hadoop {(Hadoop), (Hadoop), (Hadoop)}

Apache {(Apache),(Apache)}

word_count group:chararray num:long

is 2

on 1

Pig Examples

55Mu Sigma Confidential

Writing UDFs in Pig

Sample UDF for changing the fields into lower (ToLower)

public class ToLower extends EvalFunc<String> {

public String exec(Tuple input) throws IOException { // Providing tuple as input

if(input == null || input.size() == 0)

return null;

try{

String query = (String)input.get(0);

return query.toLowerCase().trim();

}catch(Exception e){

System.err.println("ToLower: failed to process input;error - " + e.getMessage());

return null;

}

}

//Generating the output schema

public Schema outputSchema(Schema input) {

return new Schema(new Schema.FieldSchema(getSchemaName(this.getClass().getName().toLowerCase(), input),

DataType.CHARARRAY));

}

// Function overloading . Making sure function should run for bytearray as well as chararray

public List<FuncSpec> getArgToFuncMapping() throws FrontendException {

List<FuncSpec> funcList = new ArrayList<FuncSpec>();

funcList.add(new FuncSpec(this.getClass().getName(), new Schema(new Schema.FieldSchema(null, DataType.CHARARRAY))));

return funcList;

}

Pig Examples

56Mu Sigma Confidential

Running UDFs

Compiling code :

– Your UDF requires your pig.jar as well as hadoop-core jar to compile.

– Assuming your code is in /tmp/myUDFs/ToLower.java

» javac -classpath : $PIG_HOME/pig-without-hadoop.jar: $HADOOP_HOME/hadoop-core-0.20.205.jar
ToLower.java –d classes/

– If your code is fine, it should compile smoothly.

– To make jar file

» jar –cvf ToLower.jar –C classes/ .

– To use the jar in the pig scripts (running a sample script in local grunt shell)

» $ pig –x local

» Grunt > Register ‘/tmp/myUDFs/ToLower.jar’;

» Grunt > Load A = ‘student.txt’;

» Grunt > B = FOREACH A generate ToLower($1);

» Grunt > DUMP B;

101 RAM

102 JOE

103 JOHN

student.txt

ToLower() ram

joe

john

Pig Examples

57Mu Sigma Confidential

What are types ?

Type values are the static values assigned by Pig Data types internally for different data types

– public static final byte UNKNOWN = 0;

– public static final byte NULL = 1;

– public static final byte BOOLEAN = 5;

– public static final byte BYTE = 6;

– public static final byte INTEGER = 10;

– public static final byte LONG = 15;

– public static final byte FLOAT = 20;

– public static final byte DOUBLE = 25;

– public static final byte BYTEARRAY = 50;

– public static final byte CHARARRAY = 55;

– public static final byte MAP = 100;

– public static final byte TUPLE = 110;

– public static final byte BAG = 120;

– public static final byte ERROR = -1;

Pig Examples

58Mu Sigma Confidential

Example – Passing schema inside pig scripts

Folder – “/home/hadoop/Documents/Pig/IntroductionToPig/Datasets/PolicyInfo”

» Files - “PolicyInfo.txt” , “.pig-schema” (Notice the dot at .pig_schema)

» $ pig – x local

» Grunt > A = Load ‘/tmp/Data/PolicyInfo/PolicyInfo.txt’ ; // Pig will automatically look for .pig_schema file and if

// it find it, it uses the schema defined in it.

» Grunt > B = Foreach A generate name , policyid;

» Grunt > Dump B;

(Austin,22121, Jan , Dec)

(Ram,341231, May, June)

(Joe,20232, Sept, Dec)

{

"fields":

[

{"name":"name", "type":55} ,

{"name":“policyid", "type":15},

{"name":“startmonth", “type":55},

{"name":“endmonth", “type":55},

]

}

PolicyInfo.txt

.pig_schema

Pig Examples

59Mu Sigma Confidential

Running Pig Tutorials/Examples

Pig Setup comes with a set of tutorials and UDFs for practice.Copy the pigtutorial.tar.gz from

$PIG_HOME/tutorials/ to your local directory.

Unzip the pigtutorial.tar.gz file.

– $ tar –xzf pigtutorial.tar.gz

A new directory named pigtmp is created. This directory contains the Pig tutorial scripts.

The pig scripts can be run in both local and map-reduce mode

To run the Pig Scripts in Local Mode:

– From the pigtmp directory, execute the following command(using either script1-local.pig or script2-local.pig)

– You can probably see inside those scripts and check out what they are doing inside.

– These scripts are processing a search query log file from the Excite search engine and finds search phrases
that occur with particular high frequency during certain times of the day.

– $ pig -x local script1-local.pig

– Results will be available in the script1-local-results.txt directory.

» $ cd script1-local-results.txt

» $ nano part-r-00000

Pig Examples

60Mu Sigma Confidential

Exercises

Level 1

– Consider Twitter_user_data(userid,username,timezone,friendcount)

– Consider Tweet_data (tweet_id, tweet, userid, tweet_category)

» Count the total number of twitter users

» Dump userid+username+tweet+tweet_category

» Dump all positive tweets/negative tweets/neutral tweets.

» Dumping all users with friendcount > _some_constant_

 Level 2

– Data files: cust_info , premium_data

» 1. Make a .pig_schema file for the data.

» 2. For every customer ID find the gross premium ,name and region.

» 3. Find the top two customers who paid the highest gross premium. (hint: use the results of 1)

» 4. (OPTIONAL) Try 1 and 2 with -

a).pig_schema

b) without .pig_schema and

c) with no schema defined in load statement

 Level 3:

– Generate Pig UDFs such as Taking logs, Count, Row-wise Average

Schema for cust_info : (ID:int,name:chararray,region:chararray)

Schema for premium_data:(ID:int, premium:float, start_year:int,end_year:int)

Exercises

61Mu Sigma Confidential

Useful Links

Ebook

– http://ofps.oreilly.com/titles/9781449302641/index.html

http://pig.apache.org/docs/

http://www.scribd.com/doc/31652181/Twitter-Pig-and-HBase-For-Bay-Area-Hadoop-User-

Group-May-2010

http://pig.apache.org/docs/r0.7.0/cookbook.html

http://pig.apache.org/docs/r0.7.0/piglatin_ref2.html#DISTINCT

http://pig.apache.org/docs/r0.9.1/cont.html

Appendix

http://ofps.oreilly.com/titles/9781449302641/index.html
http://ofps.oreilly.com/titles/9781449302641/index.html
http://pig.apache.org/docs/
http://www.scribd.com/doc/31652181/Twitter-Pig-and-HBase-For-Bay-Area-Hadoop-User-Group-May-2010
http://pig.apache.org/docs/r0.7.0/cookbook.html
http://pig.apache.org/docs/r0.7.0/piglatin_ref2.html#DISTINCT
http://pig.apache.org/docs/r0.9.1/cont.html

62Mu Sigma Confidential

Thank You

Chicago, IL

Bangalore, India

December, 2013

www.mu-sigma.com

Proprietary Information

"This document and its attachments are confidential. Any unauthorized copying, disclosure or distribution of the material is strictly prohibited"

http://www.nmhg.com/default.asp
http://www.nmhg.com/default.asp

