
0 Mu Sigma Confidential

Chicago, IL

Bangalore, India

www.mu-sigma.com

Proprietary Information

"This document and its attachments are confidential. Any unauthorized copying, disclosure or distribution of the material is strictly forbidden"

Chicago, IL

Bangalore, India

www.mu-sigma.com

Proprietary Information

"This document and its attachments are confidential. Any unauthorized copying, disclosure or distribution of the material is strictly forbidden"

Do The Math

Introduction to RHadoop

Jan - 2013

1 1 Mu Sigma Confidential

MapReduce in R - An overview

The rmr2 package – Map-reduce jobs in R

The rhdfs package – Interacting with HDFS

 Input/Output formats – Different options for reading and writing data

Examples for discussion

Exercises

Appendix

A: Useful links

B: Overview of R functions used in this session

C: More on Rhipe vs. RHadoop

Agenda

2 Mu Sigma Confidential

R Packages to use for Map-Reduce

 Open source APIs for the Hadoop

framework allowing users to define and

run map-reduce jobs in R

RHadoop

– Maintained by Revolution Analytics

– Designed for R programmers

– Allows for more intuitive map-reduce
programming

– Easy syntax; uses functions

Rhipe

– Maintained by Saptarshi Guha

– Uses Google’s Protocol buffers for
(faster and compact) serialization

– Based on Hadoop streaming source

– More complicated syntax; uses
expressions

Map-reduce in R - An overview

3 Mu Sigma Confidential

Each R package for Hadoop has advantages and disadvantages:
We will proceed using RHadoop by Revolutions Analytics

Hadoop streaming allows users to submit scripts written in most languages as the logic to be

executed in the mappers and reducers

– Kludgy alternative, lots of boilerplate code for ensuring inputs and outputs are serialized and de-serialized
properly

– Notoriously hard to debug

Rhipe – an R package written and maintained by Saptarshi Guha, it provides an R-interface to

Hadoop streaming and uses Google’s protocol buffers for serializing

– Better than streaming since we can write and check logic in a running session of R

– However, coding style is not congruent with R; it feels weird to use

– Syntactical complexity increases with complexity of logic being implemented

RHadoop – an R package written and maintained by Revolutions Analytics, it provides another

R-interface to Hadoop streaming and used JSON for serializing

– Insulates the coder from Java options; very R-centric

– Coding style is congruent with R; completely functional coding style; more ‘comfortable’ for R coders

– Syntactical complexity does not increase with complexity of logic as much as Rhipe

– Can pass many native R objects directly as keys and values

– JSON is a more popular and widely supported

Map-reduce in R - An overview

4 Mu Sigma Confidential

Rhadoop is a collection of three components for interacting with
the Hadoop ecosystem

rmr – This package provides the means for submitting map-reduce jobs

– Provides the mapreduce function for submitting jobs to Hadoop

– Provides important functions like keyval, to.mapper, to.reducer, to.dfs, from.dfs, and equijoin

rhdfs – This package provides the means to “talk” to the Hadoop Distributed File System

(HDFS)

– Provides important utility functions for interacting with the filesystem like hdfs.file, hdfs.read,
hdfs.write, hdfs.line.reader,
hdfs.chmod, hdfs.chown, hdfs.copy,
hdfs.move, hdfs.rename, hdfs.rm,
hdfs.mkdir, and hdfs.ls

rhbase – This package provides the

means to “talk” to HBASE and access tables

stored within

– Out of immediate scope since this
package only allows for interaction
with HBASE tables

– Not currently possible to define
map-reduce jobs to run over HBASE
tables

– Package still under active development

Map-reduce in R - An overview

5 Mu Sigma Confidential

Using Rstudio to run map-reduce in R

Map-reduce in R - An overview

6 6 Mu Sigma Confidential

MapReduce in R - An overview

The rmr2 package – Map-reduce jobs in R

The rhdfs package – Interacting with HDFS

 Input/Output formats – Different options for reading and writing data

Examples for discussion

Exercises

Appendix

A: Useful links

B: Overview of R functions used in this session

C: More on RHIPE vs. RHadoop

Agenda

7 Mu Sigma Confidential

Function keyval: Generating a Key-value pair in R

The function keyval is the R equivalent to the pseudo-code “emit” function seen in the last

session; it takes two arguments as its input

Syntax
keyval(key, val)
keys(kv)
values(kv)

Example – Generate a key value pair of first 10 integers and their squares.
keyval(1:10, (1:10)^2)

– key: (any object) the desired key(s)

– val: (any object) the desired value(s) associated with the key(s)

– kv: A key-value pair

– keyval returns one or more key-value pairs.

– A key value object should be always considered vectorized, meaning that it defines a collection of key-
value pairs. For the purpose of forming key-value pairs, the length of an object is considered its number of
rows when defined, that is for matrices and data frames, or its R length otherwise.

The rmr package – map-reduce jobs in R

8 Mu Sigma Confidential

Functions map and reduce: Mappers and reducers in R

Map and reduce functions in RHadoop take two input arguments each

map = function(key, value){
 …
 return(keyval(key, value))
}

reduce = function(key, values){
 …
 return(keyval(key, value))
}

– The mapper must take as input a (key, value) pair

– The reducer must take as input a pair consisting of a key and list of all it’s associated values

– Both must return key-value pairs

The rmr package – map-reduce jobs in R

9 Mu Sigma Confidential

Function mapreduce: rmr function that submits map-reduce jobs

The mapreduce function submits any specified logic as a streaming job to Hadoop

mapreduce(input, output=NULL, map=to.map(identity), reduce=NULL, combine=NULL,
 input.format = "native", output.format = "native",
 backend.parameters = list(), verbose = TRUE)

– input & output – character strings representing the paths of the input and output data – for multiple
inputs, the inputs argument is specified as a character vector containing all input paths

– map & reduce – the names of the mapper and reducer functions

– combine – the name of the combiner function (if separate from the reducer) or TRUE (in case the reducer
can be used) – NULL by default

– input.format & output.format – specify the formats to be used to read in the input data and write the
final output data – default to “native”, R’s native serialization format.

– backend.parameters – Specify additional, backend-specific options, e.g. to set the number of mappers
or reducers. It is recommended not to use this argument to change the semantics of mapreduce.

– verbose – a boolean option to run Hadoop in verbose mode

– Returns a string containing the location of the output on the HDFS

The rmr package – map-reduce jobs in R

10 Mu Sigma Confidential

Functions to.map and to.reduce: rmr utility functions

to.map and to.reduce are two utility functions provided by rmr that allow users to easily

convert existing functions into mappers and reducers

to.map(function1, function2){
 …
 return(mapper(key, value))
}

to.reduce(function1, function2){
 …
 return(reducer(key, values))
}

– If only function1 is specified, it is applied to the input key and the input value individually.

– If function1 and function2 are specified then it is applied function1 to the input key and function2
to the input value

– Return functions that act as mappers/reducers

The rmr package – map-reduce jobs in R

11 Mu Sigma Confidential

Functions to.map and to.reduce: rmr utility functions continued

 If one wished to simply apply a log transformation to the some column of input data, no

reducer is really required (since # of input rows = # of output rows)

The identity function in R is ideally suited to act as reducer in such cases; this is done by

simply using the identity function as an input to the to.reduce function to produce an

identity reducer

to.reduce(identity)

Similarly, in cases where reducing is not required, like aggregations, we can simply use the

identity function as an input to the to.map function to produce an identity mapper

to.map(identity)

The rmr package – map-reduce jobs in R

12 Mu Sigma Confidential

Functions to.dfs and from.dfs: rmr utility functions for testing

 It is often useful to test map-reduce logic on some test data; the utility functions to.dfs and

from.dfs allow users to write to and read from the HDFS
to.dfs(<a list of key-value pairs>){
 …
 return(<a reference to the list on the HDFS>)
}

from.dfs(<a list of key-value pairs on the HDFS>){
 …
 return(<an in-memory list read off the input on the HDFS>)
}

to.dfs can be used to write sample data from local memory to the HDFS, using syntax like

input = to.dfs(lapply(1:10, function(i) keyval(i, i^2)))

from.dfs can then be used to read the outputs of the mapreduce call from the HDFS into local

memory using syntax like
output = from.dfs(mapreduce(…))

Or a previously stored mapreduce result
output = from.dfs('/user/hadoop/lorem.txt')

The rmr package – map-reduce jobs in R

13 Mu Sigma Confidential

Functions equijoin: rmr utility function to join two input datasets

Many map-reduce jobs involve the relational joining of two input datasets; the equijoin

function performs such tasks

equijoin(left.input, right.input, input, output, outer, map.left, map.right, reduce,
 reduce.all){
 …
 return(<a reference to the output on the HDFS>)
}

– left.input & right.input – The left and right side inputs to the join – NULL by default

– input – The only input in case of a self join; mutually exclusive with the previous two – NULL by default

– output – a character representing the path where output should be written to – NULL by default (in which
case output is written to a temporary location on the HDFS)

– outer – the type of outer join to be performed – takes one of three defaults values (as character strings),
"left", "right" and "full"

– map.left & map.right – The functions to apply to each record from the left and right inputs, they follow
the same conventions as any map function – the returned key becomes the join key

– reduce – the function to be applied for each key on the lists of associated values produced by map.left
and map.right; – returns 0 or more key-value pairs like any reduce function

– reduce.all – function to be applied to each triple comprising a key, the left and right values associated
with that key – returns 0 or more key-value pairs like any reduce function

– Returns a string containing the location of the output on the HDFS

The rmr package – map-reduce jobs in R

14 14 Mu Sigma Confidential

MapReduce in R - An overview

The rmr2 package – Map-reduce jobs in R

The rhdfs package – Interacting with HDFS

 Input/Output formats – Different options for reading and writing data

Examples for discussion

Exercises

Appendix

A: Useful links

B: Overview of R functions used in this session

C: More on RHIPE vs. RHadoop

Agenda

15 Mu Sigma Confidential

The rhdfs package provides utilities for interacting with HDFS

Most functions provided by the rhdfs package will not be of frequent use within a map-reduce

context – however, the important functions are summarized here for completeness’ sake

hdfs.file, hdfs.read, hdfs.write and hdfs.line.reader are provided to enable users to

read from and write to files in the HDFS

– hdfs.file is used to open a connection to a file; it takes two primary character arguments, the first
specifying the path of the file that is to be read from/written to, the second specifies the mode, "r" for
reading and "w" for writing

– hdfs.read is used to read from files in the HDFS; it takes as input three arguments, the first being an
open connection to a file (returned by hdfs.file), the second an integer specifying the number of bytes
to be read and the third specifying the position to read from

– hdfs.write is used to write to a file on the HDFS; it takes as primary input two arguments; the first one
specifying the R object to be written and the second one specifying an open connection to a file

– hdfs.close is used to close a connection opened using hdfs.file

– hdfs.line.reader is used to read lines from a file on the HDFS; it takes as input two primary
arguments, the first a character specifying the path of the file to be read and the second an integer
argument specifying the number of lines to be read
hdfs.line.reader(path="/user/hadoop/TrainingDatasets/RHadoop/IntroductionToRHadoop/R
HadoopBooksData.txt/Dracula.txt", n=25)

Apart from hdfs.line.reader, the remaining functions all perform byte reads and writes – not

immediately important

The rhdfs package – Connecting to HDFS

16 Mu Sigma Confidential

The rhdfs package provides utilities for interacting with HDFS
continued

hdfs.chmod and hdfs.chown are provided to set access levels and ownership for files and

directories in the HDFS

– hdfs.chmod takes two primary character arguments, the first specifying the path of the file/directory for
which permissions need to be changed and the second specifying the permissions

– hdfs.chown takes three primary character arguments, the specifying the path of the file/directory for
which ownership needs to be changed, the second specifying the new owner and the third specifying the
group of the new owner

hdfs.copy, hdfs.move, hdfs.rename, hdfs.rm, hdfs.mkdir, and hdfs.ls allow the user to

browse the HDFS, move, modify and delete files

– hdfs.copy, hdfs.move and hdfs.rename all take as primary input two character arguments in a “from” -
“to” syntax

– hdfs.copy copies the contents of the “from” argument to the “to” argument; hdfs.move moves them
(think Ctrl+C vs. Ctrl+X)

– hdfs.rename changes the name of the object (file/directory) in the “from” argument to the “to” argument

– hdfs.rm takes as primary input one character string specifying the object to be deleted

– hdfs.mkdir and hdfs.ls take as primary input one character argument specifying a path on the HDFS

– hdfs.mkdir creates the path specified

– hdfs.ls lists the contents of the path specified

The rhdfs package – Connecting to HDFS

17 17 Mu Sigma Confidential

MapReduce in R - An overview

The rmr2 package – Map-reduce jobs in R

The rhdfs package – Interacting with HDFS

 Input/Output formats – Different options for reading and writing data

Examples for discussion

Exercises

Appendix

A: Useful links

B: Overview of R functions used in this session

C: More on RHIPE vs. RHadoop

Agenda

18 Mu Sigma Confidential

There are many options of reading and writing data provided for by
RHadoop

Most inputs to map-reduce begin life as an input file in some common format – tab-delimited,

comma-separate, etc

However, the outputs of such jobs are not constrained to be in the same format; since

reducers write out key-value pairs, it makes sense for the user to be able to define these as R

objects – the JSON format supports this

The input and output formats may be of the following types:

– "text": free text, useful mostly on the input side for NLP type applications

– "json": one or two tab separated, single line JSON objects per record

– "csv": comma-separated values

– "native": (default): uses the internal R serialization, offers the highest level of compatibility with R data
types

– "sequence.typedbytes": sequence file (in the Hadoop sense) where key and value are of type typedbytes,
which is a simple serialization format used in connection with streaming for compatibility with other
hadoop subsystems

 It is very easy to specify custom formats in rmr using make.input.format() and

make.output.format() functions

Input/Output formats – Different I/O options

19 19 Mu Sigma Confidential

Map-reduce in R - An overview

The rmr package – Map-reduce jobs in R

The rhdfs package – Interacting with HDFS

 Input/Output formats – Different options for reading and writing data

Examples for discussion

Exercises

Appendix

A: Useful links

B: Overview of R functions used in this session

C: More on RHIPE vs. RHadoop

Agenda

20 Mu Sigma Confidential

Bear Deer Bear Car

Car River Car Bear

River Car River Deer

0x0001b Bear Deer Bear Car

0x0001b Car River Car Bear

0x0001b River Car River Deer

Input Read

Bear , 1

Deer , 1

Bear , 1

Car , 1

Car , 1

River , 1

Car , 1

Bear , 1

River , 1

Car , 1

River , 1

Deer , 1

Map Combine

Bear , 2

Deer , 1

Car , 1

Car , 2

River , 1

Bear , 1

River , 2

Car , 1

Deer , 1

Value Key Value Key Value Key

Sort and Shuffle

Bear , 2

Bear , 1

Value Key

Car , 1

Car , 2

Car , 1

Deer , 1

Deer , 1

River , 1

River , 2

Reduce

Bear , 3

Value Key

Car , 4

Deer , 2

River , 3

Final output

Bear , 3

Deer , 2

Car , 4

River , 3

Value Key

1 2 3 4

1 By default, the line address of every line is they

key and value is the contents of the line. These

Key-Value pairs will be the input to the map

function

2 Each Mapper will generate new Key-Value pairs

based on the map function, In this case new key

is the word and value is 1.

3 Key-Value pairs will be merged on the same key

before sending it to the reducer. In this case,

since word is the key, so all the key-value pairs

associated with same word are merged

4

Finally, the reducer function run on the values

associated to same key, and produces the

result

The over all map-reduce word-count process

Input Output

map <K1,V1> <K2,V2>

reduce <K2, List(V2)> <K3,V3>

Example 1: Word count using map-reduce

Examples

21 Mu Sigma Confidential

Example 1 continued: Map-reduce word counting in R

The R code for implementing the word-count map-reduce logic is detailed below

[RHadoopWordCountBooksExampleCode.R]

wc = function(input, output = NULL) {
 map = function(k, v)
 keyval(unlist(strsplit(v, " ")), 1L)

 reduce = function(k, vv)
 keyval(k, sum(vv))

 mrOut = mapreduce(input=input, output=output,
 map=map, reduce=reduce, combine=TRUE,
 input.format="text”)
 return(from.dfs(mrOut))
}

wc(input="/user/hadoop/TrainingDatasets/RHadoop/IntroductionToRHadoop/
RHadoopBooksData.txt")

Examples

NOTE : Descriptions of R functions used in appendix

22 Mu Sigma Confidential

Example 2: A rough-and-ready equijoin example

Consider two lists of key-value pairs:

– This example uses the to.dfs function to write to the HDFS two
key-value pair lists of length 9

– Both lists have keys from 1-9

– The left input list contains values that are squares of the keys

– The right input list contains values that are cubes of the keys

– These lists get joined on their keys in equijoin, then
from.dfs is used to read the joined output back into
local memory

[RHadoopEquijoinExampleCode.R]
from.dfs(equijoin(
 left.input = to.dfs(keyval(1:9, (1:9)^2)),
 right.input = to.dfs(keyval(1:9, (1:9)^3))))

Key Value

1 1

2 4

3 9

4 16

5 25

6 36

7 49

8 64

9 81

Key Value

1 1

2 8

3 27

4 64

5 125

6 216

7 343

8 512

9 729

Examples

NOTE : Descriptions of R functions used in appendix

23 Mu Sigma Confidential

Example 2 continued: A rough-and-ready equijoin example

Key Value

1 1

2 4

3 9

7 49

8 64

9 81

4 16

5 25

6 36

Key Value

4 64

5 125

6 216

7 343

8 512

9 729

1 1

2 8

3 27

Examples

Key Value

1 1

2 4

3 9

4 64

5 125

6 216

7 343

8 512

9 729

7 49

8 64

9 81

1 1

2 8

3 27

4 16

5 25

6 36

Key Value

1 1

2 4

3 9

4 64

5 125

6 216

7 49 , 343

8 64 , 512

9 81 , 729

1 1

2 8

3 27

4 16

5 25

6 36

Left map Combine

Key Value

1 1 , 1

2 4 , 8

3 9 , 27

4 16 , 64

5 25 , 125

6 36 , 216

7 49 , 343

8 64 , 512

9 81 , 729

Reduce all Right map

24 Mu Sigma Confidential

Consider data that tracks store daily visits at all outlets of a retail chain and looks like the following:

– How would you compute total store visits for all stores after
31 January 2011?

– How would you compute store-wise total visits after
31 January 2011 for each store?

Visit Date Store Store

visits

2011-11-30 A 128

2011-11-23 A 34

2012-01-11 B 435

2010-09-15 A 786

2012-01-19 B 93

2012-01-14 B 847

2010-11-30 A 297

2010-07-25 B 218

2011-07-04 B 454

2010-10-19 A 23

2010-02-01 B 634

2011-11-26 A 9

2011-08-18 A 12

… … …

Store Visits

Example 3: Problem statement

Examples

25 Mu Sigma Confidential

Visit Date Store Store

visits

2011-11-30 A 128

2011-11-23 A 34

2012-01-11 B 435

2010-09-15 A 786

2012-01-19 B 93

2012-01-14 B 847

2010-11-30 A 297

.

.

.

.

.

.

2010-02-01 B 634

2011-11-26 A 9

2011-08-18 A 12

Input Data Mapping

Node 1

Node 2

Node 1000

Reducing

NULL, 128

NULL, 34

NULL, 435

NULL, 93

NULL, 847

NULL, 9

NULL, 12

Combining

NULL, 1537

NULL, 21

NULL, 1558

Examples

Example 3 continued: Filtering and summation steps

26 Mu Sigma Confidential

Example 3 continued: Filtering and totaling in R

Consider the summing examples from the previous session; if the input data were now to be in

the form of a comma-separated file, the R code for summing store visits (in column 3) for all

rows corresponding to store visits later than 31 January 2011 (in column 1) would be

[RHadoopFilterTotalStoreVisitsExampleCode.R]

total.visits = function(input, output=NULL, date.ref="2011-01-31") {

 map = function(k, v) {
 rows = which(as.POSIXlt(as.character(v[, 1L])) > as.POSIXlt(date.ref))
 keyval(1L, sum(v[rows, 3L]))
 }

 reduce = function(k, vv)
 keyval(k, sum(vv))

 mrOut = mapreduce(input=input, output=output,
 map=map, reduce=reduce, combine=TRUE,
 input.format=make.input.format("csv", sep=","))
 values(from.dfs(mrOut))
}
total.visits("/user/hadoop/TrainingDatasets/RHadoop/IntroductionToRHadoop/
RHadoopStoreVisitsData.csv")

Examples

NOTE : Descriptions of R functions used in appendix

27 Mu Sigma Confidential

Visit Date Store Store

visits

2011-11-30 A 128

2011-11-23 A 34

2012-01-11 B 435

2010-09-15 A 786

2012-01-19 B 93

2012-01-14 B 847

2010-11-30 A 297

.

.

.

.

.

.

2010-02-01 B 634

2011-11-26 A 9

2011-08-18 A 12

Input Data Mapping

Node 1

Node 2

Node 1000

Reducing

2011-11-A, 128

2011-11-A, 34

2012-01-B,435

2012-01-B, 93

2012-01-B, 847

2011-11-A, 9

2011-11-A, 12

Combining

2011-11-A, 162

2012-01-B, 435

2012-01-B, 940

2011-11-A, 21

2012-01-B, 1375

2012-11-A, 162

Examples

Example 3 continued: Filtering and computing monthly subtotals

28 Mu Sigma Confidential

Example 3: Filtering and subtotaling in R redux – using utility
functions in the map-reduce function call

The R code for computing monthly subtotals of store visits for each store (column two) for

visits after 31 January 2011 would be [RHadoopFilterSubtotalStoreVisitsExampleCode.R]
subtotal.visits = function(input, output=NULL, date.ref="2011-01-31") {
 map = function(k, v) {
 rows = which(as.POSIXlt(as.character(v[, 1L])) > as.POSIXlt(date.ref))
 v = v[rows,]
 ksplit = strsplit(as.character(v[,1L]), "-")
 key = character(length(rows))
 for (i in c(1L:length(rows)))
 key[i] = paste(ksplit[[i]][1L], ksplit[[i]][2L], v[i, 2L], sep="-")
 val = as.integer(v[, 3L])
 keyval(key, val)
 }
 reduce = function(k, vv) keyval(k, sum(vv))

 mrOut = mapreduce(input=input, output=output, map=map, reduce=reduce,
 combine=TRUE, input.format=make.input.format("csv", sep=","))
 return(from.dfs(mrOut))
}
subtotal.visits(input="/user/hadoop/TrainingDatasets/RHadoop/
IntroductionToRHadoop/RHadoopStoreVisitsData.csv")

Examples

29 Mu Sigma Confidential

Best practices for rmr2

Use a small sample data set first. Run the code on the actual data set only when there is no

doubt that the code is bug free.

Test all functions (input.format, map and reduce) individually in order.

There are three Hadoop modes, namely standalone (local), pseudo-distributed and distributed.

You should start debugging in standalone mode. You can use debug to debug your function

in this mode. Syntax: rmr.options(backend="local")

Move on to distributed mode if your code runs correctly in local. You cannot use debug in

this mode. To see the outputs, write to the stderr() stream, and check the user logs. Syntax:

rmr.options(backend="hadoop").

The preferred way of processing recursive lists is to avoid using unlist() and loop through

the contents using lapply(). This is especially true for non-uniform recursive lists.

Reduce early, reduce often – This is because the data shuffling and sorting takes maximum

amount of time, and the process speeds up as the amount of data in this stage is reduced. A

combiner does exactly this and should be used whenever possible.

30 30 Mu Sigma Confidential

MapReduce in R - An overview

The rmr2 package – Map-reduce jobs in R

The rhdfs package – Interacting with HDFS

 Input/Output formats – Different options for reading and writing data

Examples for discussion

Exercises

Appendix

A: Useful links

B: Overview of R functions used in this session

C: More on RHIPE vs. RHadoop

Agenda

31 Mu Sigma Confidential

Composing map-reduce jobs in R using RHadoop

Exercise 1 – write a map-reduce job to perform grouped averaging as seen in the previous

session

– Column 2 contains the grouping variable

– Column 3 contains the variable to be averaged

– How can you create and write this data into the HDFS?

Exercise 2 – write a map-reduce job to perform matrix transposition and multiplication as seen

in the previous session

– Assume the same input matrix of size 5 × 2

– How can you create and write this matrix into the HDFS?

– How can this code be extended to perform OLS?

Exercises

32 32 Mu Sigma Confidential

MapReduce in R - An overview

The rmr2 package – Map-reduce jobs in R

The rhdfs package – Interacting with HDFS

 Input/Output formats – Different options for reading and writing data

Examples for discussion

Exercises

Appendix

A: Useful links

B: Overview of R functions used in this session

C: More on Rhipe vs. RHadoop

Agenda

33 Mu Sigma Confidential

Useful links

https://github.com/RevolutionAnalytics/RHadoop

https://github.com/RevolutionAnalytics/RHadoop/wiki

https://github.com/RevolutionAnalytics/RHadoop/wiki/Tutorial

https://github.com/RevolutionAnalytics/RHadoop/wiki/Efficient-rmr-techniques

https://github.com/RevolutionAnalytics/RHadoop/blob/4efbd435aff3d52cfea116b663100baf637

035cc/rmr/pkg/docs/introduction-to-vectorized-API.md

http://www.revolutionanalytics.com/news-events/free-webinars/2011/r-and-hadoop/

http://blog.revolutionanalytics.com/2011/09/mapreduce-hadoop-r.html

http://www.slideshare.net/RevolutionAnalytics/rhadoop-r-meets-hadoop

https://github.com/saptarshiguha/RHIPE

http://www.datadr.org/

Appendix A

https://github.com/RevolutionAnalytics/RHadoop
https://github.com/RevolutionAnalytics/RHadoop
https://github.com/RevolutionAnalytics/RHadoop/wiki
https://github.com/RevolutionAnalytics/RHadoop/wiki
https://github.com/RevolutionAnalytics/RHadoop/wiki
http://stat-computing.org/dataexpo/2009/the-data.html
http://stat-computing.org/dataexpo/2009/the-data.html
http://stat-computing.org/dataexpo/2009/the-data.html
http://stat-computing.org/dataexpo/2009/the-data.html
http://stat-computing.org/dataexpo/2009/the-data.html
http://stat-computing.org/dataexpo/2009/the-data.html
http://stat-computing.org/dataexpo/2009/the-data.html
http://stat-computing.org/dataexpo/2009/the-data.html
http://stat-computing.org/dataexpo/2009/the-data.html
https://github.com/RevolutionAnalytics/RHadoop/blob/4efbd435aff3d52cfea116b663100baf637035cc/rmr/pkg/docs/introduction-to-vectorized-API.md
https://github.com/RevolutionAnalytics/RHadoop/blob/4efbd435aff3d52cfea116b663100baf637035cc/rmr/pkg/docs/introduction-to-vectorized-API.md
https://github.com/RevolutionAnalytics/RHadoop/blob/4efbd435aff3d52cfea116b663100baf637035cc/rmr/pkg/docs/introduction-to-vectorized-API.md
https://github.com/RevolutionAnalytics/RHadoop/blob/4efbd435aff3d52cfea116b663100baf637035cc/rmr/pkg/docs/introduction-to-vectorized-API.md
https://github.com/RevolutionAnalytics/RHadoop/blob/4efbd435aff3d52cfea116b663100baf637035cc/rmr/pkg/docs/introduction-to-vectorized-API.md
https://github.com/RevolutionAnalytics/RHadoop/blob/4efbd435aff3d52cfea116b663100baf637035cc/rmr/pkg/docs/introduction-to-vectorized-API.md
https://github.com/RevolutionAnalytics/RHadoop/blob/4efbd435aff3d52cfea116b663100baf637035cc/rmr/pkg/docs/introduction-to-vectorized-API.md
https://github.com/RevolutionAnalytics/RHadoop/blob/4efbd435aff3d52cfea116b663100baf637035cc/rmr/pkg/docs/introduction-to-vectorized-API.md
https://github.com/RevolutionAnalytics/RHadoop/blob/4efbd435aff3d52cfea116b663100baf637035cc/rmr/pkg/docs/introduction-to-vectorized-API.md
https://github.com/jseidman/hadoop-R/blob/master/airline/src/deptdelay_by_month/R/rmr/deptdelay-rmr.R
https://github.com/jseidman/hadoop-R/blob/master/airline/src/deptdelay_by_month/R/rmr/deptdelay-rmr.R
https://github.com/jseidman/hadoop-R/blob/master/airline/src/deptdelay_by_month/R/rmr/deptdelay-rmr.R
https://github.com/jseidman/hadoop-R/blob/master/airline/src/deptdelay_by_month/R/rmr/deptdelay-rmr.R
https://github.com/jseidman/hadoop-R/blob/master/airline/src/deptdelay_by_month/R/rmr/deptdelay-rmr.R
https://github.com/jseidman/hadoop-R/blob/master/airline/src/deptdelay_by_month/R/rmr/deptdelay-rmr.R
https://github.com/jseidman/hadoop-R/blob/master/airline/src/deptdelay_by_month/R/rmr/deptdelay-rmr.R
https://github.com/jseidman/hadoop-R/blob/master/airline/src/deptdelay_by_month/R/rmr/deptdelay-rmr.R
https://github.com/jseidman/hadoop-R/blob/master/airline/src/deptdelay_by_month/R/rmr/deptdelay-rmr.R
https://github.com/jseidman/hadoop-R/blob/master/airline/src/deptdelay_by_month/R/rmr/deptdelay-rmr.R
http://blog.revolutionanalytics.com/2011/09/mapreduce-hadoop-r.html
http://blog.revolutionanalytics.com/2011/09/mapreduce-hadoop-r.html
http://blog.revolutionanalytics.com/2011/09/mapreduce-hadoop-r.html
http://blog.revolutionanalytics.com/2011/09/mapreduce-hadoop-r.html
http://blog.revolutionanalytics.com/2011/09/mapreduce-hadoop-r.html
http://blog.revolutionanalytics.com/2011/09/mapreduce-hadoop-r.html
http://blog.revolutionanalytics.com/2011/09/mapreduce-hadoop-r.html
http://www.slideshare.net/RevolutionAnalytics/rhadoop-r-meets-hadoop
http://www.slideshare.net/RevolutionAnalytics/rhadoop-r-meets-hadoop
http://www.slideshare.net/RevolutionAnalytics/rhadoop-r-meets-hadoop
http://www.slideshare.net/RevolutionAnalytics/rhadoop-r-meets-hadoop
http://www.slideshare.net/RevolutionAnalytics/rhadoop-r-meets-hadoop
http://www.slideshare.net/RevolutionAnalytics/rhadoop-r-meets-hadoop
http://www.slideshare.net/RevolutionAnalytics/rhadoop-r-meets-hadoop
http://www.slideshare.net/RevolutionAnalytics/rhadoop-r-meets-hadoop
https://github.com/saptarshiguha/RHIPE
https://github.com/saptarshiguha/RHIPE
http://www.datadr.org/
http://www.datadr.org/

34 Mu Sigma Confidential

An overview of R functions used in this session

lapply(list, fun)

– Applies the function fun to each element of list

– lapply(list(1,2,3) function(x) x^3) yields a list containing the elements 1, 8 and 27

strsplit(string, separator)

– Splits the input string (or character vector) on the basis of the separator

– Returns a list as long as the input vector; each list element contains a character vectors containing the
sub-strings separated by the separator argument

– strsplit("2011-01-31", "-") will yield a list of length 1, whose only element will be a character
vector containing the values “2011”, “01” and “21”

sum(…)

– Returns the sum of all input arguments specified in …

– sum(1,2,3) will yield 6

unlist(list)

– Converts the input list to a vector

– unlist(list(1,2,3)) will yield a numeric vector with the elements 1, 2 and 3

Appendix B

35 Mu Sigma Confidential

An overview of R functions used in this session continued

as.POSIXlt(character)

– Converts input character into a date variable, measured in number of seconds elapsed since some
origin (this is usually 01-January-1900)

– Origin varies from system to system in R – usually 1 January 1900

– as.POSIXlt("2010-01-01")$year will yield the number of years elapsed since the origin date

» 110 in case the origin is 01-Jan-1900

paste(vector/list, collapse, sep)

– Acts as a concatenation function;

– If input is a vector or a list, returns a string with the elements of the vector/list separated by the string
specified in collapse

– If input is a set of strings, returns a concatenation of the input strings separated by the string specified in
sep

– paste(list(1, 2), collapse = "-") yields “1-2”

– paste("R", "hadoop", sep = "") yields “Rhadoop”

Appendix B

36 Mu Sigma Confidential

To better understand the differences between RHIPE and
RHadoop let us consider some sample code snippets

Based on the airline dataset: http://stat-computing.org/dataexpo/2009/the-data.html

Dataset contains departure and arrival times for flights between 1987 and 2008

The code computes average departure delay by year and month for each airline

Two code snippets implementing the same logic:

– First code in Rhipe

– Second code in RHadoop

Code snippets sourced from

– https://github.com/jseidman/hadoop-R/blob/master/airline/src/deptdelay_by_month/R/rhipe/rhipe.R

– https://github.com/jseidman/hadoop-R/blob/master/airline/src/deptdelay_by_month/R/rmr/deptdelay-rmr.R

Rhipe code is longer, syntactically convoluted

RHadoop code is shorter and easier to understand

Appendix C

http://blog.revolutionanalytics.com/2011/09/mapreduce-hadoop-r.html
http://blog.revolutionanalytics.com/2011/09/mapreduce-hadoop-r.html
http://blog.revolutionanalytics.com/2011/09/mapreduce-hadoop-r.html
http://blog.revolutionanalytics.com/2011/09/mapreduce-hadoop-r.html
http://blog.revolutionanalytics.com/2011/09/mapreduce-hadoop-r.html
http://blog.revolutionanalytics.com/2011/09/mapreduce-hadoop-r.html
https://github.com/RevolutionAnalytics/RHadoop
https://github.com/RevolutionAnalytics/RHadoop
https://github.com/RevolutionAnalytics/RHadoop
https://github.com/RevolutionAnalytics/RHadoop
http://www.nmhg.com/default.asp
http://www.nmhg.com/default.asp
http://www.nmhg.com/default.asp
http://www.nmhg.com/default.asp
http://www.nmhg.com/default.asp
http://www.nmhg.com/default.asp

37 Mu Sigma Confidential

RHIPE vs. RHADOOP – RHIPE implementation (1)

Appendix C

38 Mu Sigma Confidential

RHIPE vs. RHADOOP – RHIPE implementation (2)

Appendix C

39 Mu Sigma Confidential

RHIPE vs. RHADOOP – RHADOOP implementation

Appendix C

40 Mu Sigma Confidential

Thank You

Chicago, IL

Bangalore, India

Jan 2013

www.mu-sigma.com

Proprietary Information

"This document and its attachments are confidential. Any unauthorized copying, disclosure or distribution of the material is strictly prohibited"

https://github.com/RevolutionAnalytics/RHadoop/wiki
https://github.com/RevolutionAnalytics/RHadoop/wiki

