Mu Sigma

Introduction to RHive

Do The Math

Chicago, IL
Bangalore, India
WWW.mu-sigma.com

March 15, 2012

Proprietary Information

"This document and its attachments are confidential. Any unauthorized copying, disclosure or distribution of the material is strictly forbidden"

I Agenda

» Introduction to RHive

» Why RHive?

» RHive vs Hive

» Getting Started

» Map Reduce in RHive

» User defined functions (UDFs) using RHive
» Examples

» Exercises

Mu Sigma Confidential 1

Introduction to RHive : R and Hive

» RHive is an R extension facilitating distributed computing via Hive query.
» Itis a R package that integrates R environment with Hive

» It allows easy usage of HiveQL (Hive Query Language) in R by facilitating usage of R objects
and R functions in Hive

» Using RHive, it is possible to write HiveQL in R, launch this query from R, and interact with Hive
» R functions and R objects are exported to Hive and launched in Hive via RHive.

» RHive consists of the following components:
— rhive — functions to interact with Hive from within R
— rhive.hdfs — functions to interact with HDFS from within R
— udf — functions to allow users to use R functions and R Objects in Hive.

Mu Sigma Confidential

I Agenda

» Introduction to RHive

» Why Rhive?

» RHive vs Hive

» Getting Started

» Map Reduce in RHive

» User defined functions (UDFs) using RHive
» Examples

» Exercises

Mu Sigma Confidential 3

©
Why RHive?

» Many analysts have been using and are familiar with R but R can'’t support the analysis of data of
huge scale

» MapReduce in Hadoop is capable of handling big data of this scale but many analysts don'’t
recognize this framework, less know how to use it

» However, they are more likely to be familiar with using SQL to gain an insight of dataset and
preprocessing it

» Like SQL, Hive has an ad-hoc query engine which executes in Hadoop. RHive thereby provides
a good solution to handle and analyze big data via integrating R and Hive

» R is the best solution for familiarity, Hive is the best solution for capability. RHive is inspired by
this reason, the analysis of BIG DATA

Mu Sigma Confidential 4

RHive — Architecture

T
®
14

P

Mu Sigma Confidential

H

aloianosoiar oIoIonoonel OnoIo noond
Cl1onoaneIar GIongaronel oroIomIonm
oloolonear oIoDiQronol onoDEQIonm

(L Rl R

=y
01010001 N1 10I0IODONIT | hﬂﬂmﬂ

R Function R Object RUDF RUDAF

@ @ O O

Source: http://www.slideshare.net/miloveme/r-hive-introduction

5

I Agenda

» Introduction to RHive

» Why RHive?

» RHive vs Hive

» Getting Started

» Map Reduce in RHive

» User defined functions (UDFs) using RHive
» Examples

» Exercises

Mu Sigma Confidential 6

©

RHive Vs Hive

» RHive = R + Hive

» Hive is the open source implementation of data warehouse system for Hadoop that facilitates
data summarization, ad-hoc queries, and the analysis of big datasets stored in Hadoop
compatible file systems

» RHive is an R package that integrates Hive with R

» In RHive, small data is executed in R and the large data is executed in Hive

Mu Sigma Confidential 7

I Agenda

» Introduction to RHive

» Why RHive?

» RHive vs Hive

» Getting Started

» Map Reduce in RHive

» User defined functions (UDFs) using RHive
» Examples

» Exercises

Mu Sigma Confidential

©

Getting Started

» hive --service hiveserver # Run this as a background task to start RHive
services)
» sudo R CMD Rserve # Start Rserve

On the R console, run the following commands:

» The environment variables must be assigned to the respective home directories of Hadoop and
Hive.

Sys.setenv(HIVE _HOME="/usr/local/hadoop/hive")
Sys.setenv(HADOOP_HOME="/usr/local/hadoop/hadoop")

» library(RHive) # Load the RHive library
» rhive.init() # Initialize RHive
» rhive.connect() # Establish a connection

Mu Sigma Confidential 9

RHive Basic Functions
» rhive.query - execute Hive query in R.
(ex) rhive.query (“SELECT * FROM Employee”)

» rhive.close - close Hive connection
(ex) rhive.close()

» rhive.list.tables - get Hive table list
(ex) rhive.list.tables()

» rhive.desc.table - get Hive table information
(ex) rhive.desc.table(“Employee™)

Mu Sigma Confidential

10

RHive Basic Functions (Contd.)

» rhive.load.table - retrieve table data from Hive to R
(ex) result <- rhive.aggregate(“Employee”, “SUM”,”’sal”,groups=“deptno”)
rhive.load.table(result)

» rhive.write.table - creates R’s data frame into Hive and inserts all data

(ex) rhive.write.table(myDataFrame) #A table by name myDataFrame is created

» rhive.exist.table - checks whether the table already exists in Hive

(ex) rhive.exist.table(“Employee™)

Mu Sigma Confidential 11

RHIVE Basic Functions (Contd.)

The following functions are available only from RHive version 0.0-5:

» rhive.basic.t.test - runs Welch's t-test on two samples
(ex) rhive.basic.t.test("iris","sepallength","iris","petallength")

» rhive.block.sample - creates a new table with data sampling by blocks
(ex) seedNumber <- sample(1:2716,1)
rhive.block.sample("listvirtualmachines",seed=seedNumber)

» rhive.basic.scale - converts numerical data with O average and 1 deviation

(ex) scaled <- rhive.basic.scale("iris","sepallength")

» rhive.basic.by - runs group by for a specified column

(ex) rhive.basic.by("iris","species”,"sum","sepallength")

Mu Sigma Confidential

12

©

RHIVE Basic Functions (Contd.)

The following functions are available only from RHive version 0.0-5:

» rhive.basic.merge - makes new data set from merging two tables, based on their common
columns

(ex) rhive.basic.merge('iris’', 'usarrests',by.x="sepallength',by.y="murder")

» rhive.basic.mode - returns the mode and its frequency within a specified row of the Hive table
(ex) rhive.basic.mode('iris', 'sepallength"')

» rhive.basic.range - returns the maximum and minimum values within the specified numerical
row of the Hive table

(ex) rhive.basic.range('iris', 'sepallength')

Mu Sigma Confidential 13

©

RHive HDFS Functions

» rhive.hdfs.1s() — Lists the contents of the HDFS. Does the same thing as "hadoop fs -Is".

» rhive.hdfs.get — Brings the data in HDFS to local. This functions in the same way as "hadoop

fs-get". (ex) rhive.hdfs.get("/messages","/tmp/messages")

» rhive.hdfs.put — Uploads the data in local to HDFS.

(ex) rhive.hdfs.put("/tmp/messages","/messages new")

» rhive.hdfs.rm — Deletes files in HDFS. Does the same thing as "hadoop fs -rm".
(ex) rhive.hdfs.rm("/messages new")

» rhive.hdfs.rename — Changes the filename for files in HDFS, or moves directories. Does the
same thing as "hadoop fs -mv*

(ex) rhive.hdfs.rename("/messages", "/messages renamed")

» rhive.hdfs.exists — Checks whether a file exists within HDFS.
(ex) rhive.hdfs.exists("/messages renamed")

Mu Sigma Confidential 14

©

RHive HDFS Functions (Contd.)

» rhive.hdfs.mkdirs — Does the same thing as "hadoop fs -mkdir®. (ex)
rhive.hdfs.mkdirs("/newdir/newsubdir")

» rhive.hdfs.close() — Closes the connection when you have completed using HDFS and no
longer need to use it.

Mu Sigma Confidential 15

Apply Functions in RHive — napply() and sapply()

» napply - R apply function for Numeric type
— rhive.napply(table-name,FUN,coll,...)

» sapply - R apply function for String type
— rhive.sapply(table-name,FUN,coll,...)

» Use the rhive.load.table function to view the results in R.

(Ex) R function which sums all passed columns
sumCols<-function(argl,...)

{

sum(argl,...)

}

result<-rhive.napply(“tab”,sumCols,coll,col2,col3,co0l4d)
rhive.load.table(result)

Mu Sigma Confidential

16

©

Aggregate Function

» The rhive.aggregate function is used to aggregate data stored in HDFS using HIVE functions

— rhive.aggregate(tablename,hiveFUN, ..., groups)
» Use the rhive.load.table function to view the results in R.
(Ex) Aggregate using SUM(Hive aggregation function)
result<-rhive.aggregate(“emp”, “SUM”,”sal”, groups="deptno™)

rhive.load.table(result)

Mu Sigma Confidential 17

I Agenda

» Introduction to RHive

» Why RHive?

» RHive vs Hive

» Getting Started

» Map Reduce in RHive

» User defined functions (UDFs) using RHive
» Examples

» Exercises

Mu Sigma Confidential 18

©

RHIVE MapReduce Function

» rhive.mapapply - takes the tables, columns, function as arguments but runs only mapper

rhive.mapapply(tablename, mapperFUN, mapinput=NULL, mapoutput=NULL, by=NULL,
args=NLL, buffersize=-1L, verbose=FALSE, hiveclient
=rhive.defaults('hiveclient"))

» rhive.reduceapply - same as above but performs only reducer
rhive.reduceapply(tablename, reducerFUN, reduceinput=NULL,
reduceoutput=NULL, args=NULL, buffersize=-1L, verbose=FALSE, hiveclient
=rhive.defaults('hiveclient'))

» rhive.mrapply - performs both Map and Reduce steps
rhive.mrapply(tablename, mapperFUN, reducerFUN, mapinput=NULL,
mapoutput=NULL, by=NULL, reduceinput=NULL,reduceoutput=NULL,

mapper_args=NULL, reducer_args=NULL, buffersize=-1L, verbose=FALSE,
hiveclient =rhive.defaults('hiveclient'))

Mu Sigma Confidential 19

©

RHive MapReduce Example

#Word Count Example
#Input Table - mytable, with one column, words.
#Map Function - Read input table row by row and send every word as key with 1
as value
map <-function(key,value){
if(is.null(value))
{
put (NA,1)
}
lapply(value,function(v){lapply(strsplit(x=v, split="")[[1]],
function(word)put(word,1))})
}

#Reduce Function - Sum the values of all similar keys
reduce <-function(key,values){
put(key,sum(as.numeric(values)))

}

#Call the map-reduce function in RHive

result<-
rhive.mrapply(“mytable",map,reduce,c("NULL", "words"),c("word", "one"),by="word
",c("word","one"),c("word", "count"))

head(result)
Mu Sigma Confidential 20

I Agenda

» Introduction to RHive

» Why RHive?

» RHive vs Hive

» Getting Started

» Map Reduce in RHive

» User Defined Functions (UDFs) using RHive
» Examples

» Exercises

Mu Sigma Confidential 21

User defined functions (UDFs) in RHive

» UDF (User Defined Function)
» UDAF (User Defined Aggregate Function)

» UDTF (User Defined Table create Function)

Mu Sigma Confidential 22

©

rhive.assign

» The rhive.assign function assigns the functions and variables made in R so that they may be
referenced from Hive.

(Ex)
newsum< -function(value)

{

value+1

}

rhive.assign("newsum",newsum)

» You can also assign objects that are not Functions.
coefl<-3.141593
rhive.assign("coefl",coefl)

Mu Sigma Confidential 23

rhive.export

» The rhive.export function prepares objects made in R by actually deploying them.
(Ex)
sum3values<-function(a,b,c)

{

a+b+c

}

rhive.assign("sum3values",sum3values)

rhive.export(sum3values)

Mu Sigma Confidential

24

rhive.exportAll

©

» The rhive.exportAll function serves to entirely deploy all symbols starting with the same string for the

first argument.
(EX)
sumAllColumns<-function(prev,values)
{
if (is.null(prev)){ prev <- rep(0.0,length(values))}
prev+values
}
sumAllColumns.partial<-function(values) { values }
sumAllColumns.merge<- function(prev,values)
{
if (is.null(prev)){ prev <- rep(0.0,length(values))}

prev+values

}

sumAllColumns.terminate<- function(values) { values }

Mu Sigma Confidential

25

rhive.exportAll (Contd.)

rhive.assign("sumAllColumns",sumAllColumns)
rhive.assign("sumAllColumns.partial”,sumAllColumns.partial)
rhive.assign("sumAllColumns.merge",sumAllColumns.merge)
rhive.assign("sumAllColumns.terminate"”,sumAllColumns.terminate)
rhive.exportAll("sumAllColumns")

The last line is actually same as the following:
rhive.exportAll("sumAllColumns™")
rhive.export("sumAllColumns™)
rhive.export("sumAllColumns.partial™)
rhive.export("sumAllColumns.merge")
rhive.export("sumAllColumns.terminate")

Mu Sigma Confidential 26

RUDF - R User Defined Functions
» TYPE: return type SELECT R (‘R function name’ ,col1, col2, ..., TYPE)

» R function which sums all passed columns
sumCols<-function(argl,...)

{

sum(argl,...)

}

rhive.assign(‘sumCols’,sumCols)
rhive.exportAll(‘sumCols’ ,hadoop-clusters)
result<-rhive.query(“SELECT R(‘sumCols’,coll,co0l2,co0l3,c0l4,0.0)FROM tab”)

plot(result)

Mu Sigma Confidential 27

©

RHive - UDF usage

library(RHive)

rhive.write.table(USArrests)

sumCrimes <- function(columnl, column2, column3) { columnl + column2 + column3 }
rhive.assign("sumCrimes",sumCrimes)

rhive.export("sumCrimes")

rhive.query("SELECT rowname, urbanpop, R('sumCrimes',murder,assault, rape, 0.0)
FROM usarrests")

rhive.close()

Mu Sigma Confidential 28

RHive UDF SQL Vs HQL

» RHive UDF SQL

rhive.query("SELECT rowname, urbanpop, R('sumCrimes',murder,assault, rape,
©.0) FROM usarrests")

» Hive SQL

rhive.query("SELECT rowname, urbanpop, murder + assault + rape AS crimes FROM
usarrests")

Mu Sigma Confidential 29

©

UDAF — User Defined Aggregate Function
» RA() function is used to call UDAFs, so SQL's GROUP BY syntax must be used along with it

» Makes use of the RA() function, which returns only one value, and is always of the character
type

» Hive processes the returned results and finally sends them to RHive
(EX)

Result<-rhive.query(“SELECT species, RA('sumAllColumns', sepallength,
sepalwidth, petallength, petalwidth) FROM iris GROUP BY species”)

Print(Result)

species
1 setosa
2 versicolor
3 virginica
X cl
1 250.29999999999998,171.40000000000003,73.10000000000001,12.299999999999995
2 296.8,138.50000000000003,212.99999999999997,66.3
3 329.3999999999999,148.7,277.59999999999997,101.29999999999998

Mu Sigma Confidential 30

©

UDAF (Contd.)

» The 2nd column, X_c1, is a value made by UDAF and it consists of character type

» You can also see the values are distinguished by “,”s between them

» To make this back into a numeric vector, R Functions like strsplit() must be used. However, even
if there are no problems with using that when there is a small number of Records, a problem
occurs otherwise

» The example above has only 3 Records but when applying the same procedure for big tables,
you might encounter millions of Records

» Hence the values returned by UDAF must be each split and made into column values

Mu Sigma Confidential 31

©

UDTF — User Defined Table Create Function

» In order that values returned by UDAF be split and made into column values, we need sub-
gueries and UDTF.

(Ex)

result <- rhive.query("SELECT unfold(dummytable.dummycolumn, 0.0, 0.0, 0.0,
0.0, ',') AS (sepallength, sepalwidth, petallength, petalwidth) FROM (
SELECT RA('sumAllColumns', sepallength, sepalwidth, petallength, petalwidth)
AS dummycolumn FROM iris GROUP BY species) dummytable")

print(result)

sepallength sepalwidth petallength petalwidth
1 250.3 171.4 73.1 12.3

2 296.8 1385 213.0 66.3

3 329.4 1487 277.6 101.3

» It can be can seen that the UDAF return values are all split into columns by the “unfold” UDTF

» Unfold is the UDTF Function supported by RHive, so there is no need to separately apply R
code

Mu Sigma Confidential 32

I Agenda

» Introduction to RHive

» Why RHive?

» RHive vs Hive

» Getting Started

» Map Reduce in R

» User defined functions (UDFs) using RHive
» Examples

» Exercises

Mu Sigma Confidential 33

Examples

On the R console, perform the following:

|) Create a table Employee and select employees who earn more than $5000 a month.

> rhive.query(“CREATE TABLE Employee(Emp_Id INT, Emp_Name STRING,
Emp_Email STRING, Emp_Salary DOUBLE) ROW FORMAT DELIMITED FIELDS
TERMINATED BY ',"' STORED AS TEXTFILE”)

> rhive.query(‘LOAD DATA LOCAL INPATH "/home/hadoop/employee.csv"
OVERWRITE INTO TABLE Employee’)

> rhive.query(‘SELECT * FROM Employee WHERE Emp_Salary > 5000°)

Mu Sigma Confidential 34

Mu Sigma Confidential

Il) Example - To Predict Flight Delay
library(RHive)

rhive.connect()

Retrieve training set from large dataset stored in HDFS

train <- rhive.query("SELECT dayofweek,arrdelay,distance FROM airlines TABLESAMPLE(BUCKET 1 OUT OF 10000

ON rand())
traing$arrdelay <- as.numeric(train$arrdelay)
traing$distance <- as.numeric(traing$distance)
train <- train[!(is.na(traing$arrdelay) | is.na(train$distance)),]
model <- 1lm(arrdelay ~ distance + dayofweek,data=train)
Export R object data
rhive.assign("model", model)
Analyze big data using model calculated by R
predict_table <- rhive.napply(“airlines”,function(argl,arg2,arg3) {
if(is.null(argl) | is.null(arg2) | is.null(arg3)) return(0.0)
res <- predict.lm(model, data.frame(dayofweek=argl,arrdelay=arg2,distance=arg3))

return(as.numeric(res)) }, ‘dayofweek’, €‘arrdelay’, €‘distance’)

Source: http://www.slideshare.net/miloveme/r-hive-introduction

35

I Agenda

» Introduction to RHive

» Why RHive?

» RHive vs Hive

» Getting Started

» Map Reduce in R

» User defined functions (UDFs) using RHive
» Examples

» Exercises

Mu Sigma Confidential 36

Exercise 1

» Create a table Customer with fields Cust_Id, Cust Name and Cust_Type, and load data from

customer.csv into it.

©

» Write a simple RHIVE code to replace all NULL values in Cust_Type with the default customer

type, Silver.
Cust _Id
1

2
3
4

The output would look like the following :

Cust_Id

A WO N B

Mu Sigma Confidential

Cust_Name

Tom
Tim
Larry
John

Cust_Name

Tom
Tim
Larry
John

Cust_Type
NULL
Gold
NULL
Platinum

Cust_Type
Silver

Gold

Silver
Platinum

37

Exercise 2

» Write a simple RHIVE code which takes as input a table name & a categorical column name (of
that table) and creates (k-1) dummy variable columns for k distinct categorical column values.

— For example, for the table Customer with Cust_Type as a categorical variable (with distinct Cust_Type

values as Silver, Gold & Platinum customers) :

Cust _Id
1

2
3
4

The output would look like the following :

Cust_Id
1

2
3
4

Mu Sigma Confidential

Cust_Name

Tom
Tim
Larry
John

Cust_Name

Tom
Tim
Larry
John

Cust_Type
Silver

Gold

Silver
Platinum

Silver_dummy
1

0
1
0

Platinum_dummy

0

0
0
1

©

38

I Appendix

Mu Sigma Confidential 39

RHive — Pre-requisites

» Java 1.6

» R2.13.0

» Rserve 0.6-0

» rJava 0.9-0

» Hadoop 0.20.x (x >=1)

» Hive 0.8.x (x >=0)

Mu Sigma Confidential 40

Appendix

References

» https://github.com/nexr/RHive

» https://github.com/nexr/RHive/wiki

» http://cran.r-project.org/web/packages/RHive

» https://github.com/nexr/RHive/wiki/UserGuides

» http://www.slideshare.net/miloveme/r-hive-introduction

Mu Sigma Confidential 4l

https://github.com/nexr/RHive
https://github.com/nexr/RHive/wiki
http://cran.r-project.org/web/packages/RHive
http://cran.r-project.org/web/packages/RHive
http://cran.r-project.org/web/packages/RHive
https://github.com/nexr/RHive/wiki/UserGuides

Thank You

Chicago, IL
Bangalore, India
March 15, 2012

WWWwW.mu-sigma.com

Proprietary Information

"This document and its attachments are confidential. Any unauthorized copying, disclosure or distribution of the material is strictly prohibited”

http://www.nmhg.com/default.asp
http://www.nmhg.com/default.asp

