Mu Sigma

Continuous Learning Program

Programming Skills

Do The Math

Chicago, IL
Bangalore, India
WWWwW.mu-sigma.com

February, 2011

Proprietary Information

"This document and its attachments are confidential. Any unauthorized copying, disclosure or distribution of the material is strictly forbidden"

I Agenda

» Structured Programming — what is it?
— Designing your process
— Representation of your problem
— Modularizing your code

» Case Studies & Brainstorming session

Mu Sigma Confidential

Do we want to be code monkeys??

Code Monkey get up get coffee

Code Monkey go to job

Code Monkey have boring meeting

With boring manager Rob

Rob say Code Monkey very diligent

But his output stink

His code not "functional” or "elegant”

What do Code Monkey think?

Code Monkey think maybe manager want to write

god damned login page himself
Code Monkey not say it out loud
Code Monkey not crazy, just proud

Code Monkey like Fritos

Code Monkey like Tab and Mountain Dew
Code Monkey very simple man

With big warm fuzzy secret heart:

Code Monkey like you

Code Monkey hang around at front desk
Tell you sweater look nice

Code Monkey offer buy you soda

Bring you cup, bring you ice

You say no thank you for the soda cause
Soda make you fat

Anyway you busy with the telephone

No time for chat

Code Monkey have long walk back to cubicle he sit
down pretend to work

Code Monkey not thinking so straight

Code Monkey not feeling so great

Code Monkey like Fritos

Code Monkey like Tab and Mountain Dew

Code Monkey very simple man

With big warm fuzzy secret heart:

Code Monkey like you

Code Monkey like you a lot

Code Monkey have every reason

To get out this place

Code Monkey just keep on working
See your soft pretty face

Much rather wake up, eat a coffee cake
Take bath, take nap

This job "fulfilling in creative way"
Such aload of crap

Code Monkey think someday he have everything even
pretty girl like you

Code Monkey just waiting for now
Code Monkey say someday, somehow

Code Monkey like Fritos

Code Monkey like Tab and Mountain Dew
Code Monkey very simple man

With big warm fuzzy secret heart:

Code Monkey like you

Mu Sigma Confidential

Why is Structured Programming important?

» Structured Programming makes you more efficient by:
— Making it easier to read and debug
— Over time, enables re-use within your work and across with other teams

» You will not be the only developer forever ...
— You will get promoted or move on and somebody will inherit your programs

» ... even if you were, you still can’t do it all
— Remember, you are part of a bigger eco-system and that could include other developers as well

» Structured Programming, like structured thinking is ‘good’ !!

-

» Think before you do » Capture your thoughts
» Think modular, divide and conquer » Pseudo-code before you code
» Keep it Simple » Make it readable

Mu Sigma Confidential

©
Design should be the single most important phase of your entire
programming process

Why is it important?

“f I had one hour to save the world, | would spend the first
55 minutes defining the problem.” f

Albert Einstein
Winner, Nobel Prize in Physics, 1921

» Frontload the thinking
» Have conflict sooner
» Avoid rework

4) 4)
Why precedes how: Understand the why and never lose sight of that
. Draw the big picture: White-board the overall solution and use this to drive your plan
Think before you do Overall System view: Draw an end-to-end flow of what your program needs to do
_ / \. J
4) 4)
Separation of concerns: Each module has minimal overlap with other modules.
. Encapsulated: Communicates through a well defined interface
Think Modular Substitutable: can be replaced by another module with minimal impact on the system.
Reusable: Can be used in other programs
_ / _ /

Keep it Simple ...

Mu Sigma Confidential 4

Representation is key
others

to making your programs transparent to

Why is it important?

» Visualize the problem
» Communicate better
» Collaborate better

i $d
“Solving a problem simply means representingitsoasto § =

make the solution transparent.” Q' "2
- Herbert A. Simon 8

Winner, Nobel Prize for Economics, 1978

Get the flow right: Capture the logical flow that each program needs to follow
Get the objectives right: Capture what you want the program to do
Get the outputs right: Capture what you want to get out of the program

-

4) 4
Capture your

thoughts

_ / \.
4)

Pseudo-code before
you code

- J -

Create an ordered sequence: Number the steps

Keep it unambiguous and well-defined: clear, do-able, and can be done without
difficulty

Make sure it performs some task

Make sure it halts in finite time: All algorithms must terminate!

J

Make it readable ...

Mu Sigma Confidential

Modularizing your code will allow you to break the big task into
smaller tasks

\/V ———
“Debugging is twice hard as writing the code in
the first place. Therefore, if you write the code
as cleverly as possible, you are, by definition,

not smart enough to debug it.”

S
SNS———

Modular Code

DEBUG UPGRADE REUSE

Mu Sigma Confidential

©

Instructions

» Structure of your output:
Define the Objective(s)
List down your assumptions
Develop a workflow
Document the programming flow in the form of pseudo-code.

» Do not use Powerpoint or Excel — the work has to be done in Word.

» Special focus needs to be on:
— Design thinking
— Modularity

REMEMBER: THE PRIMARY FOCUS OF THIS ASSIGMENT IS TO EXPLORE DESIGN
THINKING AND MODULARITY AND NOT ON ALGORITHMS !!!

Mu Sigma Confidential 7

I Case Studies

» Customer Purchase Pattern
» First Purchase Product Mix
» Product Sales Analysis

» Product Pricing Analysis

Mu Sigma Confidential

Case Study 1 — Customer Purchase Pattern

Mu Sigma Confidential 9

©

Study of customer purchase pattern across different months

» Problem : To compute cumulative sales & time since previous purchase (in months) for every

customer studying for every month starting from their respective registration month to May’11

» Background : Retail client is an online subsidiary. Customers are assigned a customer id
when they login or register on the website and that date is called as the registration date of
that customer. Of all the customers who register, some of them purchase and their data is

recorded in the transaction data.
» Datasets required for the analysis :
— Registration data (PK — Customer id) : Registration date/month of each customer

— Orders data (PK — Customer id, Order month) : details of orders made rolled up at a

customer, month level.

Mu Sigma Confidential 10

Snapshot of Input & Output data

Customer_id Reg_month
a 11/1/2010
b 6/1/2010
C 1/1/2010

Note : cis a registered customer,
but did not make a single purchase
during his tenure

)

Output table layout

Order data Layout

Customer_id | Order_month| Sales ($) Orders
a 12/1/2010 20 2
a 2/1/2011 30 5
a 4/1/2011 50 6
b 10/1/2010 10 1
b 12/1/2010 12 4
b 5/1/2011 45 5
b 6/1/2011 23 2

customer_id | reg_month | observation_month | order_month Sales Time_since_prev_purchs** Cum_sales*

a 11/1/2010 12/1/2010 12/1/2010 20 0 0

a 11/1/2010 1/1/2011 . . 1 20
a 11/1/2010 2/1/2011 2/1/2011 30 2 20
a 11/1/2010 3/1/2011 . . 1 50
a 11/1/2010 4/1/2011 4/1/2011 50 2 50
a 11/1/2010 5/1/2011 1 100
a 11/1/2010 6/1/2011 . . 2 100
b 6/1/2010 10/1/2010 10/1/2010 10 0 0

b 6/2/2010 11/1/2010 . . 1 10
b 6/3/2010 12/1/2010 12/1/2010 12 2 10
b 6/4/2010 1/1/2011 1 22
b 6/5/2010 2/1/2011 2 22
b 6/6/2010 3/1/2011 3 22
b 6/7/2010 4/1/2011 . . 4 22
b 6/8/2010 5/1/2011 5/1/2011 45 5 22
b 6/9/2010 6/1/2011 6/1/2011 23 1 67

Mu Sigma Confidential

Cum_sales* : cumulative sales excluding the current month (observation month) value
Time_since_prev_purchs** : Time since previous purchase in months

11

©

Process Flow

» A random customer sample was selected for the study

» A dataset was created studying all the customers for all the months starting from their
registration month to May’11 (For eg: Customer registered in Jan 2011, will have 6 rows in

the dataset for every month till May 2011)

» The order data was then merged with the above rolling dataset to get month by month

purchase activity of the customer

» This was then utilized to find ‘Time since last purchase’ and cumulative sales for every

Registration data Rolling window from registration month Orders data

Month on month purchase behavior analysis

Variable Creation- Cumulative Sales, Time since last purchase

Mu Sigma Confidential 12

The techniques used for the study

» Functions like intck, intnx were used to create flags and months for the rolling window

» Internal do loop- The do loop was used to create the rolling month on month window for
analysis

» By statement- This was used to process the dataset in groups of customer id

» Retain statement — This was used to calculate the value of Time since last purchase and
cumulative sales

13

Mu Sigma Confidential

Case Study 2 — New Customers 15t purchase product mix

Mu Sigma Confidential 14

©

Study of first purchase LOB mix for new customers

» Problem : To study the first purchase LOB mix pattern for new accounts during the last five

quarters.

» Background : Technology based client is an American multinational information technology

corporation that develops, sells and supports IT related products and services. Client wants to

understand the product preference of the new customers

» Datasets required for the analysis :

— Transaction Data(PK- Account ID, order date, product) : Daily purchase data of all the customers for a

specified period

Mu Sigma Confidential 15

Snapshot of Input & Output data

ACCOUNT_ID | DRDER_DATE]| GROUP_DESC | PRODUCT_DESC [TRANSACTION_DATE_QUARTER| TOTAL_AS_SOLD_REVENUE_LISD|SALES_MARGIN_LISD|SYSTEM_GTY

1 1938224897 0BAE/2010 Mon_Tied Peripherals Hon_Tied Peripherals 20moaoz 428179 18064 I

2 1938224897 OBAT/2010 Mon_Tied Peripherals Hon_Tied Peripherals 20moao2 1184418 40773 I

3 1938224897 OBA17/2010 Desktops OptiPlex Deskiops 2011002 771 807 18336 1

— 4 1938224897 02/10/2011 Desktops Wostro Desktaps 201200 1023 UE 755 1
2 5 1938224897 02/21/2011 Desktops OptiPlex Deskiops 20120M BB4 059 1RE B2 1
P B 1933224807 03/30/2011 Notebooks Vostro Notebooks 201200 983.275 218144 1

7 1938224897 03/31/2011 Desktops OptiPlex Desklops 201200 3042845 B10.053 3

8 1938224897 OB/09/2011 Desklops OptiPlex Deskiops 2012002 1039268 328932 1

3 1938224526 11/0B/2009 Desktops OptiPlex Deskiops 2010004 1463146 543 BB7 1

10| 1938706061 04/19/2008 Desktaps Personal Desktops 2006601 £31.554 B77.938 1

Fixed Wk |Latitude |[Maobile Wk |NTP OptiPlex DT |Personal NB |Power Edge |Vostro DT|Vostro NEXPS NB
Fixed Wk G6% 0% 2% 26% 4% 0% 0% 2% 0% 0%
Latitude 0% 5% 0% 29% 8% 0% 0% 4% 4% 1%
Mobile Wk 10% 0% T0% 20% 0% 0% 0% 0% 0% 0%
- MTP 2% 2% 0% 653% 5% 0% 3% 10% 10% 0%
§. OptiPlex DT 1% 5% 0% 17% 2% 0% 1% 3% 2% 0%
8 Fersonal NB 0% 0% 0% 30% 0% B50% 0% 0% 10% 0%
Fower Edge 0% 0% 0% 25% 1% 0% 67% 1% 0% 0%
Vostro DT 0% 1% 0% 14% 1% 0% 0% T8% 5% 0%
Vostro NB 0% 2% 0% 20% 1% 0% 0% 7% T0% 0%
XPS NB 0% 10% 0% 30% 0% 0% 0% 0% 0% 60%

Mu Sigma Confidential 16

©

Process Flow

» The customer transaction data for the period Q3FY11 to Q3FY12 is considered.

» A dataset was created studying all the new accounts during the 5 quarters starting from
Q3FY11 to Q3FY12.

» Then only the first purchase for the new accounts is considered leaving alone the rest of the

purchases.

» This dataset was then utilized to find the LOB mix pattern for those set of accounts.

Transaction data New accounts during last 5 quarters

First purchase/order for these new accounts

LOB mix pattern by using transpose/SQL join & proc freq

Mu Sigma Confidential 17

The techniques used for the study

» By statement was used to process the dataset in groups of Account id

» Functions like transpose/SQL joins were used to get the different LOB/product bought in 15t
purchase

» PROC FREQ — was used to get the required cross tab along with Row % of accounts, thus
getting the final required table in the deck

Mu Sigma Confidential 18

Case Study 4 — Product Pricing Analysis

Mu Sigma Confidential 19

©

Study of pricing of items in each category

» Problem : To calculate the percentile of the AUR (Average Unit Retail, AUR = (Sales/ Units
Sold) of items in a category and bucket the items based on the AUR. The buckets are <25

Percentile, 26 — 75 Percentile and > 76 Percentile.

» Background: Client is the world’s biggest retailer and is under an aggressive pricing initiative,
it needs to ensure that pricing of its items are lower when compared to competitors. For doing

this, it needs to understand the pricing at a category level for all the items.

» Tables required for the analysis :
» Transaction Data : Daily sales data from all the stores for a specified period

» Iltem dimension: Mapping the items in the transaction table to the levels in the merchandise

hierarchy

Mu Sigma Confidential 20

©

Process Flow

» Take a period for which item pricing has to be studied

» A table is created for all the transactions in the specified period, the item dimension table is

joined with to get the department and category of the items sold

» The transactions are then rolled up at a department, category, item level and the AUR is

calculated using the aggregated sales and units sold

» The items for each category are sorted based on the AUR and the row numbers are

calculated.
» For each category, calculate the maximum value of the rownumber(100t" Percentile).
» The Percentile is then calculated for each category
ltem AUR Percentile = (Row Number of item — 1)/ (MAX AUR in category -1)

» After the AUR percentiles have been calculated for all the items, the total number of items

for each bucket is then computed using a CASE statement

Mu Sigma Confidential 21

©

The techniques used for the study

» Aggregate function SUM is used for the calculation of the AUR, MAX is used to get the MAX
row number (100" Percentile) for each category

» Analytical function ROW NUMBER is used to calculate the position of each item in the
category and then for the computation of the percentile

» ORDER BY clause is used to sort the rows based on the AUR for each category

Mu Sigma Confidential 22

Case Study 5- Order Allocation Process

Mu Sigma Confidential 23

©
Optimize the order allocation process for a retail client having an
online subsidiary

» Problem : To determine the store that will cater the order amount, out of all the stores that are

eligible for the order allocation by optimizing the process based on total units assigned

» Background : Retail client is an online subsidiary. All the orders made are online and will be
shipped to home via a store. Certain rules :
» If there are multiple stores that can fulfill an order, assign the order to the store with the lowest assigned
unit quantity
» An order amount cannot be divided among different stores. One store will fulfill the whole order amount

» If there are two stores that can fulfill the order and both the stores have catered equal amount of orders so

far, then that order can be fulfilled by either of the stores.

» Datasets required for the analysis :

» Order Allocation data (PK — Order number) : Information of the order amount and stores
eligible to cater the order

Mu Sigma Confidential 24

Snapshot of Input & Output data

Ordernum | Orderamt | StoresEligible ordernum | orderamt | load_s1 | load_s2 | load_s3 | store_idx
1 20 S3 1 20 0 0 20 3
2 12 S1 2 12 12 0 20 1
3 19 51,52 3 19 12 19 20 2
4 7 $1,52 4 7 19 19 20 1
5 14 $1,52,53 5 14 33 19 20 1
6 19 S2 6 19 33 38 20 2
7 5 51,52 7 5 38 38 20 1
8 17 S2 8 17 38 55 20 2
9 13 S3 9 13 38 55 33 3
10 5 S1 10 43 55 33 1
11 2 $1,52,53 11 2 43 55 35 3
12 20 51,53 12 20 43 55 55 3
13 3 51,53 13 46 55 55 1
14 51,52 14 49 55 55 1
15 16 S1 15 16 65 55 55 1
16 10 $1,52,53 16 10 65 65 55 2
17 11 S2 17 11 65 76 55 2
18 S3 18 65 76 59 3
19 7 $1,52,53 19 7 65 76 66 3

20 19 S3 20 19 65 76 85 3

*Assume that the initial load is O for all stores.

Mu Sigma Confidential 25

