
0Mu Sigma Confidential

Chicago, IL

Bangalore, India

www.mu-sigma.com

Proprietary Information

"This document and its attachments are confidential. Any unauthorized copying, disclosure or distribution of the material is strictly forbidden"

Chicago, IL

Bangalore, India

www.mu-sigma.com

Proprietary Information

"This document and its attachments are confidential. Any unauthorized copying, disclosure or distribution of the material is strictly forbidden"

Do The Math

Continuous Learning Program

February, 2011

Programming Skills

11Mu Sigma Confidential

Agenda

Structured Programming – what is it?

– Designing your process

– Representation of your problem

– Modularizing your code

Case Studies & Brainstorming session

2Mu Sigma Confidential

Do we want to be code monkeys??

Code Monkey get up get coffee
Code Monkey go to job
Code Monkey have boring meeting
With boring manager Rob
Rob say Code Monkey very diligent
But his output stink
His code not "functional" or "elegant"
What do Code Monkey think?
Code Monkey think maybe manager want to write

god damned login page himself
Code Monkey not say it out loud
Code Monkey not crazy, just proud

Code Monkey like Fritos
Code Monkey like Tab and Mountain Dew
Code Monkey very simple man
With big warm fuzzy secret heart:
Code Monkey like you

Code Monkey hang around at front desk
Tell you sweater look nice
Code Monkey offer buy you soda
Bring you cup, bring you ice
You say no thank you for the soda cause
Soda make you fat
Anyway you busy with the telephone
No time for chat

Code Monkey have long walk back to cubicle he sit
down pretend to work
Code Monkey not thinking so straight
Code Monkey not feeling so great
Code Monkey like Fritos
Code Monkey like Tab and Mountain Dew
Code Monkey very simple man
With big warm fuzzy secret heart:
Code Monkey like you
Code Monkey like you a lot

Code Monkey have every reason
To get out this place
Code Monkey just keep on working
See your soft pretty face
Much rather wake up, eat a coffee cake
Take bath, take nap
This job "fulfilling in creative way"
Such a load of crap
Code Monkey think someday he have everything even
pretty girl like you
Code Monkey just waiting for now
Code Monkey say someday, somehow

Code Monkey like Fritos
Code Monkey like Tab and Mountain Dew
Code Monkey very simple man
With big warm fuzzy secret heart:
Code Monkey like you

3Mu Sigma Confidential

Why is Structured Programming important?

Structured Programming makes you more efficient by:

– Making it easier to read and debug

– Over time, enables re-use within your work and across with other teams

You will not be the only developer forever …

– You will get promoted or move on and somebody will inherit your programs

… even if you were, you still can’t do it all

– Remember, you are part of a bigger eco-system and that could include other developers as well

Structured Programming, like structured thinking is ‘good’ !!

Think before you do

Think modular, divide and conquer

Keep it Simple

Design

Capture your thoughts

Pseudo-code before you code

Make it readable

Represent

4Mu Sigma Confidential

Design should be the single most important phase of your entire
programming process

Why is it important?

Think Modular

Separation of concerns: Each module has minimal overlap with other modules.

Encapsulated: Communicates through a well defined interface

Substitutable: can be replaced by another module with minimal impact on the system.

Reusable: Can be used in other programs

Think before you do

Why precedes how: Understand the why and never lose sight of that

Draw the big picture: White-board the overall solution and use this to drive your plan

Overall System view: Draw an end-to-end flow of what your program needs to do

Keep it Simple …

“If I had one hour to save the world, I would spend the first

55 minutes defining the problem.”

- Albert Einstein

- Winner, Nobel Prize in Physics, 1921

 Frontload the thinking

 Have conflict sooner

 Avoid rework

5Mu Sigma Confidential

Representation is key to making your programs transparent to
others

Why is it important?

Pseudo-code before

you code

Create an ordered sequence: Number the steps

Keep it unambiguous and well-defined: clear, do-able, and can be done without

difficulty

Make sure it performs some task

Make sure it halts in finite time: All algorithms must terminate!

Capture your

thoughts

Get the flow right: Capture the logical flow that each program needs to follow

Get the objectives right: Capture what you want the program to do

Get the outputs right: Capture what you want to get out of the program

Make it readable …

“Solving a problem simply means representing it so as to

make the solution transparent.”

- Herbert A. Simon

Winner, Nobel Prize for Economics, 1978

 Visualize the problem

 Communicate better

 Collaborate better

6Mu Sigma Confidential

Modularizing your code will allow you to break the big task into
smaller tasks

“Debugging is twice hard as writing the code in

the first place. Therefore, if you write the code

as cleverly as possible, you are, by definition,

not smart enough to debug it.”

Modular Code

DEBUG UPGRADE REUSE

Brian Kernighan

7Mu Sigma Confidential

Instructions

Structure of your output:

- Define the Objective(s)

- List down your assumptions

- Develop a workflow

- Document the programming flow in the form of pseudo-code.

Do not use Powerpoint or Excel – the work has to be done in Word.

Special focus needs to be on:

– Design thinking

– Modularity

REMEMBER: THE PRIMARY FOCUS OF THIS ASSIGMENT IS TO EXPLORE DESIGN

THINKING AND MODULARITY AND NOT ON ALGORITHMS !!!

88Mu Sigma Confidential

Customer Purchase Pattern

First Purchase Product Mix

Product Sales Analysis

Product Pricing Analysis

Case Studies

9Mu Sigma Confidential

Case Study 1 – Customer Purchase Pattern

10Mu Sigma Confidential

Study of customer purchase pattern across different months

Problem : To compute cumulative sales & time since previous purchase (in months) for every

customer studying for every month starting from their respective registration month to May‟11

Background : Retail client is an online subsidiary. Customers are assigned a customer id

when they login or register on the website and that date is called as the registration date of

that customer. Of all the customers who register, some of them purchase and their data is

recorded in the transaction data.

Datasets required for the analysis :

– Registration data (PK – Customer id) : Registration date/month of each customer

– Orders data (PK – Customer id, Order month) : details of orders made rolled up at a

customer, month level.

11Mu Sigma Confidential

Snapshot of Input & Output data
Registration data layout

Customer_id Reg_month

a 11/1/2010

b 6/1/2010

c 1/1/2010

Order data Layout

Customer_id Order_month Sales ($) Orders

a 12/1/2010 20 2

a 2/1/2011 30 5

a 4/1/2011 50 6

b 10/1/2010 10 1

b 12/1/2010 12 4

b 5/1/2011 45 5

b 6/1/2011 23 2

Note : c is a registered customer,

but did not make a single purchase

during his tenure

Output table layout

customer_id reg_month observation_month order_month Sales Time_since_prev_purchs** Cum_sales*

a 11/1/2010 12/1/2010 12/1/2010 20 0 0

a 11/1/2010 1/1/2011 . . 1 20

a 11/1/2010 2/1/2011 2/1/2011 30 2 20

a 11/1/2010 3/1/2011 . . 1 50

a 11/1/2010 4/1/2011 4/1/2011 50 2 50

a 11/1/2010 5/1/2011 . . 1 100

a 11/1/2010 6/1/2011 . . 2 100

b 6/1/2010 10/1/2010 10/1/2010 10 0 0

b 6/2/2010 11/1/2010 . . 1 10

b 6/3/2010 12/1/2010 12/1/2010 12 2 10

b 6/4/2010 1/1/2011 . . 1 22

b 6/5/2010 2/1/2011 . . 2 22

b 6/6/2010 3/1/2011 . . 3 22

b 6/7/2010 4/1/2011 . . 4 22

b 6/8/2010 5/1/2011 5/1/2011 45 5 22

b 6/9/2010 6/1/2011 6/1/2011 23 1 67

Cum_sales* : cumulative sales excluding the current month (observation month) value

Time_since_prev_purchs** : Time since previous purchase in months

12Mu Sigma Confidential

Process Flow

A random customer sample was selected for the study

A dataset was created studying all the customers for all the months starting from their

registration month to May‟11 (For eg: Customer registered in Jan 2011, will have 6 rows in

the dataset for every month till May 2011)

The order data was then merged with the above rolling dataset to get month by month

purchase activity of the customer

This was then utilized to find „Time since last purchase‟ and cumulative sales for every

month
Registration data Rolling window from registration month Orders data

Month on month purchase behavior analysis

Variable Creation- Cumulative Sales, Time since last purchase

13Mu Sigma Confidential

The techniques used for the study

Functions like intck, intnx were used to create flags and months for the rolling window

 Internal do loop- The do loop was used to create the rolling month on month window for

analysis

By statement- This was used to process the dataset in groups of customer id

Retain statement – This was used to calculate the value of Time since last purchase and

cumulative sales

14Mu Sigma Confidential

Case Study 2 – New Customers 1st purchase product mix

15Mu Sigma Confidential

Study of first purchase LOB mix for new customers

Problem : To study the first purchase LOB mix pattern for new accounts during the last five

quarters.

Background : Technology based client is an American multinational information technology

corporation that develops, sells and supports IT related products and services. Client wants to

understand the product preference of the new customers

Datasets required for the analysis :

– Transaction Data(PK- Account ID, order date, product) : Daily purchase data of all the customers for a

specified period

16Mu Sigma Confidential

Snapshot of Input & Output data

IN
P

U
T

O
u

tp
u

t

17Mu Sigma Confidential

Process Flow

The customer transaction data for the period Q3FY11 to Q3FY12 is considered.

A dataset was created studying all the new accounts during the 5 quarters starting from

Q3FY11 to Q3FY12.

Then only the first purchase for the new accounts is considered leaving alone the rest of the

purchases.

This dataset was then utilized to find the LOB mix pattern for those set of accounts.

New accounts during last 5 quarters

First purchase/order for these new accounts

LOB mix pattern by using transpose/SQL join & proc freq

Transaction data

18Mu Sigma Confidential

The techniques used for the study

By statement was used to process the dataset in groups of Account id

Functions like transpose/SQL joins were used to get the different LOB/product bought in 1st

purchase

PROC FREQ – was used to get the required cross tab along with Row % of accounts, thus

getting the final required table in the deck

19Mu Sigma Confidential

Case Study 4 – Product Pricing Analysis

20Mu Sigma Confidential

Study of pricing of items in each category

Problem : To calculate the percentile of the AUR (Average Unit Retail, AUR = (Sales/ Units

Sold) of items in a category and bucket the items based on the AUR. The buckets are <25

Percentile, 26 – 75 Percentile and > 76 Percentile.

Background: Client is the world‟s biggest retailer and is under an aggressive pricing initiative,

it needs to ensure that pricing of its items are lower when compared to competitors. For doing

this, it needs to understand the pricing at a category level for all the items.

Tables required for the analysis :

Transaction Data : Daily sales data from all the stores for a specified period

 Item dimension: Mapping the items in the transaction table to the levels in the merchandise

hierarchy

21Mu Sigma Confidential

Process Flow

Take a period for which item pricing has to be studied

A table is created for all the transactions in the specified period, the item dimension table is

joined with to get the department and category of the items sold

The transactions are then rolled up at a department, category, item level and the AUR is

calculated using the aggregated sales and units sold

The items for each category are sorted based on the AUR and the row numbers are

calculated.

For each category, calculate the maximum value of the rownumber(100th Percentile).

The Percentile is then calculated for each category

Item AUR Percentile = (Row Number of item – 1)/ (MAX AUR in category -1)

After the AUR percentiles have been calculated for all the items, the total number of items

for each bucket is then computed using a CASE statement

22Mu Sigma Confidential

The techniques used for the study

Aggregate function SUM is used for the calculation of the AUR, MAX is used to get the MAX

row number (100th Percentile) for each category

Analytical function ROW NUMBER is used to calculate the position of each item in the

category and then for the computation of the percentile

ORDER BY clause is used to sort the rows based on the AUR for each category

23Mu Sigma Confidential

Case Study 5- Order Allocation Process

24Mu Sigma Confidential

Optimize the order allocation process for a retail client having an
online subsidiary

Problem : To determine the store that will cater the order amount, out of all the stores that are

eligible for the order allocation by optimizing the process based on total units assigned

Background : Retail client is an online subsidiary. All the orders made are online and will be

shipped to home via a store. Certain rules :

 If there are multiple stores that can fulfill an order, assign the order to the store with the lowest assigned

unit quantity

 An order amount cannot be divided among different stores. One store will fulfill the whole order amount

 If there are two stores that can fulfill the order and both the stores have catered equal amount of orders so

far, then that order can be fulfilled by either of the stores.

Datasets required for the analysis :

Order Allocation data (PK – Order number) : Information of the order amount and stores

eligible to cater the order

25Mu Sigma Confidential

Snapshot of Input & Output data

*Assume that the initial load is 0 for all stores.

Order Allocation - Input dataset

Ordernum Orderamt StoresEligible

1 20 S3

2 12 S1

3 19 S1,S2

4 7 S1,S2

5 14 S1,S2,S3

6 19 S2

7 5 S1,S2

8 17 S2

9 13 S3

10 5 S1

11 2 S1,S2,S3

12 20 S1,S3

13 3 S1,S3

14 3 S1,S2

15 16 S1

16 10 S1,S2,S3

17 11 S2

18 4 S3

19 7 S1,S2,S3

20 19 S3

Order Allocation Index - Output Dataset

ordernum orderamt load_s1 load_s2 load_s3 store_idx

1 20 0 0 20 3

2 12 12 0 20 1

3 19 12 19 20 2

4 7 19 19 20 1

5 14 33 19 20 1

6 19 33 38 20 2

7 5 38 38 20 1

8 17 38 55 20 2

9 13 38 55 33 3

10 5 43 55 33 1

11 2 43 55 35 3

12 20 43 55 55 3

13 3 46 55 55 1

14 3 49 55 55 1

15 16 65 55 55 1

16 10 65 65 55 2

17 11 65 76 55 2

18 4 65 76 59 3

19 7 65 76 66 3

20 19 65 76 85 3

