
DISCUSSION DOCUMENT

SAS Workshop

Proprietary Information

"This document and its attachments are confidential. Any unauthorized copying, disclosure or distribution of the material is strictly forbidden"

Chicago, IL
Bangalore, India

Month 2005
www.mu-sigma.com

CONFIDENTIAL

1

DISCUSSION DOCUMENT

Class room session

Proprietary Information

"This document and its attachments are confidential. Any unauthorized copying, disclosure or distribution of the material is strictly forbidden"

Chicago, IL
Bangalore, India

Month 2005
www.mu-sigma.com

CONFIDENTIAL

2

There are five basic windows available in the SAS software –
irrespective of whether its Windows SAS or Unix SAS

 Editor – Write the SAS
program

 Log – Check the log after
running the SAS code

 Output – Check the output,
if applicable, post SAS
processing

 Explorer – Navigate and
check libraries and
datasets

 Results – Stores past
results for review

Results Explorer Output LOG Editor

SAS Help

3

The SAS programming language consists of mainly
two kinds of steps

DATA steps typically create or modify SAS
datasets. They can also be used to produce
custom designed reports. For example you
can use DATA steps to:

– put your data into a SAS data set

– compute values

– check for and correct errors in your data

produce new SAS data sets by subsetting,
merging, and updating existing data sets

SAS Language

DATA STEP PROC STEP

PROC (procedure) steps are pre written
routines that enable you to analyze and
process the data in SAS data set. For example
you can use PROC steps to:

– create a report that lists the data

– produce descriptive statistics

– create a summary report

– produce plots and charts

4

Lets look at a sample SAS program

DATA STEP

PROC STEP

A normal SAS program can go up to 1000s of lines of code consisting of DATA & PROC steps

5

A SAS Library is basically an address to a particular
location in your hard drive
By default all SAS datasets will get created in the WORK library

 SAS datasets in WORK library are stored temporarily and exist only during the session

Usually the SAS WORK library is located at “C:\Documents and Settings\<User name>\Local
Settings\Temp\SAS Temporary Files”

 SAS gives you the ability to change the location of your default WORK library

6

LIBNAME statement can be used to create libraries at
user defined locations
A permanent library will store datasets permanently, i.e., they will not get deleted after the SAS

session is closed

 The syntax for LIBNAME is as follows:

A valid library name must start with an alphabet and cannot have more than 8 characters

libname myfiles “D:\Work\SAS\Data”;

7

To store datasets in the permanent library use a two
– level naming convention
 To store datasets in the your permanent library the syntax is libname.dataset_name

When the SAS session is closed, the library reference will get deleted but the SAS datasets in that
location will be retained

Other uses of LIBNAME statements are:

– Creating ODBC connections to query databases

– Make connections to SAS transport files

– Use SPSS engine in SAS to read SPSS portable files

data myfiles.sales;

 set sales;

run;

Copies the SALES
dataset from WORK
library to MYFILES
library

8

SAS system options control the way SAS performs
operations
 SAS system options differ from SAS data set options and statement options in that once you invoke a

system option, it remains in effect for all subsequent DATA and PROC steps unless modified

 SAS system options can be specified in the following ways:

– SAS default

– The configuration file

– The command line

– The autoexec file

– Options Environment Window

– The OPTIONS statement

– The opLoad procedure

 In this session we will cover how to set SAS system options only through the OPTIONS statement

The default SAS system
options can be displayed
by running:

PROC OPTIONS; RUN;

9

SAS system options… contd.
 The syntax for OPTIONS statement in SAS is as follows:

 Some of the most commonly specified options are

– errors = n (stops SAS procession after it encounters the nth error)

– compress = yes (compresses SAS datasets after they are created)

– reuse = yes (makes efficient use of space inside compressed SAS datasets)

– obs = n (uses only the first n observations from a dataset; specifying MAX resets this option)

– center / nocenter (centers / left aligns the SAS output respectively)

– nodate (suppresses printing of Date in the SAS output)

– mergenoby = error (throws error in the log if the by statement is missing in a merge step)

– msglevel = i (throws information into log when one variable in a dataset gets overwritten while
merging)

– mlogic, mprint, symbolgen (throws additional information in the log window for debugging macros)

– fmtsearch = (libname) (uses the permanent library for storing and searching user defined formats)

options <option1> <option2> … ;

How will you use SAS system options to check if the syntax of your code is correct
without actually processing any observations?

10

Compile Program

Initialize variables

to missing in PDV

Load one

observation in PDV

Execute statements

Output to SAS

dataset

End of

file?

Data processing using SAS –
Concept of Program Data Vector (PDV)

N _ERROR_ Name Id DOJ

 PDV, created during the compilation phase,

 is a logical area in memory where a dataset is

processed one observation at a time

 SAS creates two temporary variables

_N_ – current observation number in process

_ERROR_ – Binary flag to indicate data

processing errors

Other variables – _TYPE_ , _FREQ_,

STATISTICS etc. get created for specific

procedures

Each variable is set to missing at the start of an

interaction

Output to SAS

dataset

Yes

No

Compilation Phase

Execution Phase

SAS Processing Program Data Vector

Understanding the PDV is crucial to writing

efficient error free SAS programs

11

Advantages of PDV
 In a PDV, SAS is able to look at only one row at a time – hence less memory intensive

DATA step conditions which are applied before data is read into PDV reduces processing time and
increases efficiency

 For more detailed explanation of PDV refer to the PDV Concepts.pdf document

12

DISCUSSION DOCUMENT

Day 1 – Import, Data step concepts, functions, date time

Proprietary Information

"This document and its attachments are confidential. Any unauthorized copying, disclosure or distribution of the material is strictly forbidden"

Chicago, IL
Bangalore, India

www.mu-sigma.com

CONFIDENTIAL

13

The first step in working with SAS is to get your
data in to it!
Data can be obtained from multiple sources for the purpose of analysis

 Following are some of the ways in which you can get data into SAS

– Using PROC IMPORT / IMPORT wizard in SAS window

– Using DATA – INFILE statements

– Through an ODBC connection to databases

– Using a DDE connection to a Windows Application

SAS Data

Raw Data / Flat Files
 Tab Delimited Files
 CSV Files

Spreadsheets
 Excel
 Open Office Calc

Databases
 SQL Server
 Oracle
 Access

Points to Remember While
Importing

• Get the layout details of the raw
files from the client before trying
to read in the data

• Prepare a data dictionary of all
the variables – which will include
variable names, labels, formats,
length etc.

• Check for errors while importing

• Print observations or open
datasets from SAS and do a
visual check to see if the data
has been read correctly

14

Types of raw or flat files
Raw flat files are usually of two types

– Fixed Width: Every variable starts from a particular column and ends at a particular column. Hence
the width of every field is fixed

– Delimited: Every field is separated by a delimiter. Commonly used delimiters are comma, tab, pipe

0031GOLDENBERG DESIREE

0040WILLIAMS ARLENE M.

0071PERRY ROBERT A.

0082MCGWIER-WATTSCHRISTINA

0031,GOLDENBERG,DESIREE

0040,WILLIAMS,ARLENE M.

0071,PERRY,ROBERT A.

0082,MCGWIER-WATTS,CHRISTINA

Fixed Width Delimited

Emp Id Last Name First Name

0031 GOLDENBERG DESIREE

0040 WILLIAMS ARLENE M.

0071 PERRY ROBERT A.

0082 MCGWIER-WATTS CHRISTINA

15

A brief overview of informats and formats in SAS
 Informat is an instruction which tells SAS how to read data into SAS variables

 Format instructs SAS how to display a variable

 There are typically three categories of SAS informats and formats: character, numeric and data / time

 The syntax structure of Informats and formats are as follows:

– Character informats: $INFORMATw.

– Numeric informats: INFORMATw.d

– Date / Time informats: INFORMATw.

 $ indicates a character informat. The w indicates the width and d specifies the number of decimal
places. The following table gives an example of how SAS can display the same value in different ways
using the inbuilt formats library

16

Reading fixed width files
 To read fixed width files you would need to know the layout of the raw data completely, i.e., where

does each column start and end

 The infile statement instructs SAS to read from an external file

 lrecl option changes the default width of the external file to be read by SAS which is 256 columns

 firstobs option instructs SAS to read data from a specific row

Example – Reading fixed width files using DATA INFILE

Character Variables

Numeric Variable

Date Variable

Date format for dates
specified as MM-DD-YYYY
or MM/DD/YYYY

Path to the raw flat file

17

Reading Delimited Files
Reading delimited files will require the knowledge of the layout of the dataset along with the type of

delimiter used in the file

DSD option stands for delimiter sensitive data. It has three functions

– Instructs SAS that the file to be read is a delimited file and sets default delimiter to comma

– Allows delimiters to be included within quotes

– Reads two consecutive delimiters as missing

 The TRUNCOVER options prevents SAS from going to next row to read data if any observation is
incomplete

Example – Reading delimited files using DATA INFILE

The “09”x indicates it is
TAB delimited file

The colon instructs SAS
to stop reading a field
once it encounters the
next delimiter

18

Importing data from Data Import Wizard
 SAS windows gives you the flexibility of reading delimited files using an import wizard

 SAS will try to intelligently guess the format of each variable while reading and hence may not be
perfect!

19

Data can be exported from SAS either using PROC
Step, Export Wizard or using a DATA step
 The EXPORT procedure has the capability create all kinds of files such as delimited files, Excel sheets,

Access databases, Lotus spreadsheets, etc. – provided proper license is available

 Similar to the IMPORT wizard, there also exists an EXPORT wizard in SAS

 The EXPORT wizard can export SAS datasets to any format provided the license is available

Additional methods of exporting SAS data sets are

– Using DATA – PUT statements

– SAS Output Delivery System (ODS)

– Using SAS DDE connection

Example – Exporting SAS data set to CSV file

Name of the dataset to
be exported

Output path and filename

Instructs SAS to replace
the output file if it exists

Option to specify the
format of the output file

20

Importing data with a lot of variables
1. Running PROC IMPORT on the file or a small subset of the file.

2. If possible, select the option to use the first line as variable names

3. Copy the SAS log to the Program Editor

4. Delete the non-SAS code.. line number, titles, etc.

5. Modify the informats, formats, lengths as required

6. Run the new code

21

Data steps are used to manipulate data in SAS
 Sub-setting variables from datasets

– Keep option

– Drop option

– Keep statement

– Drop statement

 creating new/modifying existing variables

– Using functions

– By conditionally assigning values using “if-then-else” loops

 Filtering observations in datasets

– Where statement

– Where option

 Example - The code on the next slide assigns a path on the local machine to the library “src”, creates a
subset “trans” of the dataset “transaction_master” in the library “src” with only certain variables from
“transaction_master”, conditionally creates new variables in “trans” and with observation matching a
set of criteria

 The example above will be used to walk through different aspects of the data step

22

This code will be used as an example to explain
data step concepts

23

The basics - Data and set statements and dataset
options
 In the example above, the third line is the data statement and the next two lines are the set statement:

– The data statement tells SAS to create an output dataset “trans” in the library “src”

– The set statement tells SAS to read data from the input dataset “transanction_master” in the library
“src”

Within brackets in each statement, dataset options are used. Three commonly used options are the
drop, keep and rename options:

– The drop option in the data statement tells SAS to not write the variables trantype, lineval, lineqty
and in_dt to the output dataset

– The keep option in the set statement tells SAS to read only the variables brand, trantype, lineval,
lineqty and invdate from the input dataset

– The rename option in the set statement tells SAS to read the variable invdate as in_dt from the
input dataset

– The where option in the set statement tells SAS to read only those observations where brand is
either of “Hewlett Packard”, Lexmark”, “Canon”, “Brother”, “Fujitsu”, “Epson” and trantype is “IN”
from the input dataset

24

The drop, keep, rename and where options – usage
Drop: When used in the data statement, it specifies which variables should not be written to the

output dataset. When used in the set statement, it specifies which variables should not be read from
the input dataset

 Keep: When used in the data statement, it specifies which variables should be written to the output
dataset. When used in the set statement, it specifies which variables should be read from the input
dataset

Rename: When used in the data statement, it specifies which variables should be written to the output
dataset with different names and what those names should be. When used in the set statement, it
specifies which variable should be read from the input dataset with different names and what those
names should be

Where: When used in the data statement, it specifies which observations should be written to the
output dataset. When used in the set statement it specifies which observations should be read from
the input dataset

NOTE - Using keep/drop in the set statement does not affect the input dataset in any way. It simply
specifies which variables should be read/not be read from the input dataset

Question: What would happen if the keep option in the set statement were to be changed to:

25

Creating/modifying variables in data steps – Declaring
variables
 In the example above, the seven lines after the set statement are used to declare new variables and

assign their formats

 The three most widely used system defined formats are:

– Character formats - Declared as $n. where n is the number of characters

– Numeric formats - Declared as k.n where k is the total number of characters (including decimal
places) and n is the number of characters after the decimal place

– Date formats - Declared in various ways, some common date formats are:

Format Example

date9. 14JUL1983

date11. 14 JUL 1983

ddmmyy8. 14/07/83

ddmmyy10. 14/07/1983

26

Creating/modifying variable - Variable attributes
 There are many variable attributes, some important ones being:

– Length: The length of a variable specifies what format the variable should be stored as. Therefore
the first line below specifies that the variable invdate be stored as a character of length 7

– Format: The format of a variable specifies what format the variable should be displayed as.
Therefore the third line below specifies that the variable amount_bucket be stored as a character of
length 6 but the fourth line specifies that it be displayed as a character of length 2

– Label: The label of a variable contains allows the user to assign a 256 length character string as a
label for a variable. This is usually used in practice to store a short description/definition of the
variable

NOTE – The informat of a variable is used to specify what format the variable should be read as when
reading data, as discussed in the previous session

NOTE –SAS stores date variables as an integer (number of days since 1 Jan, 1960). Thus, date formats
cannot be used with length statements

Question: What would happen if the format of the variable invdate were to be changed to $2.?

27

Creating/modifying variables – assigning values
 In the example above, the 13th, 15th, 16th,19th, 20th, 21st and 22nd lines are used to assign values to

variables

– In line 13, functions and a concatenation operator is used to assign a value to the variable invdate

– In lines 15, 16, 20, 21, 22, constant values are assigned to the variables avg_item_cost and
amount_bucket. The variable avg_item_cost is assigned a constant numeric value. The variable
amount_bucket is assigned a constant character value

– In line 19, a value calculated by using the division operator is assigned to the variable avg_item_cost

– NOTE - By using conditional logic, the variable amount_bucket is assigned different constant
character values for observations meeting different conditions

28

Conditional logic in SAS – If-then-else, do loops
Conditional logic can be used to tell SAS to execute statements only when certain conditions are met

 In the example above, lines 14 to 23 use conditional logic to assign values to the variables
avg_item_cost and amount_bucket, conditional to values of the variables lineqty and lineval

 The general syntax for if/else if loops is – if/else if <logical expression> then <executable
statements>; (lines 20, 21,22)

 If multiple expressions are to be evaluated after an if/else if statement then a do is additionally used in
conjunction with the if/else if statement. The general syntax for this is – if/else if <logical expression>
then do; <executable statements>; end; (lines14-17, 18-23)

 Therefore in the example above, if lineqty is less than 1 then avg_item_cost = 0 and amount_bucket =
“Free” and if lineqty is greater than 1 then avg_item_cost = lineval/lineqty and amount_bucket is
conditionally assigned values based upon values of lineval

29

Logical expressions
 Since logical expressions are essentially binary in nature (either the condition is true or it’s false), not

can be used in an if/else if statement to execute statement when a condition is not met. The general
syntax for this is – if/else if not <logical expression> then <executable statements>;

– Therefore, the following two pieces of code are logically equivalent and will yield the same results:

 Since logical expressions are binary in nature, if/else if statements can also be used to execute
different statements for zero and non-zero values of integer variables – the zero values of the variable
are evaluated as false and all other values as true. The general syntax for this is – if/else if <integer
variable> then <executable statements>;

– Therefore, the following two pieces of code will yield the same results:

– But the following two pieces are not logically equivalent and will yield different results:

Question: Of the first two comparisons, which will be more efficient? How will the output of the two
statements in the third comparison differ?

30

Mnemonic operators

Symbol Mnemonic Definition

< Lt Less than

<= Le Less than or equal to

> Gt Greater than

>= Ge Greater than or equal to

= Eq Equal to

~= Ne Not equal to

& AND And

| OR Or

~ NOT Not

31

So finally, let us look back at the example and look
at the expected output

 The variables brand, trantype, lineval, lineqty and invdate and observations meeting the following
criteria

– Brand is either “Hewlett Packard”, Lexmark”, “Canon”, “Brother”, “Fujitsu” or “Epson”

– Trantype is “IN”

 are read from the dataset “src.transaction_master”

– The variable invdate is read as in_dt

Variables invdate, amount_bucket and avg_item_cost are declared and some of their attributes are
defined

 Invdate is assigned text values of the type “07-1983” by taking the year and month of the in_dt
variable and concatenating them

 For observations where lineqty is lesser than 1, avg_item_amount is set to 0 and amount_bucket is set
to “Free”

 For observations where lineqty is greater than 1, avg_item_amount is set to lineval/lineqty and
amount_bucket is set to either “Low”, “Medium” or “High”, based on values of lineval

Variables trantype, lineval, lineqty and in_dt are not written to the output dataset “src.trans”

32

Multiple datasets
 If we write multiple dataset names in the set statement, all of those datasets are appended

– They must all have the same variables

– The variables must be in the same order on all datasets

– Common variables in all the datasets must all have the same format

 If we write multiple dataset names in the data statement, all of those datasets are created

– Using the following syntax, we can conditionally write observations meeting different requirements
to different output datasets, as seen in the example below

If <condition> then output <dataset>;

33

Functions in SAS
 SAS has numerous types of functions. The types that are commonly used are:

– Character functions

– Numeric functions

– Date/date-time functions

 In this class, we will begin by looking at some commonly used functions falling in the first two
categories

 In general, SAS functions use the following syntax:

– X = Function(argument_1, argument_2,…., argument_n)

Arguments can be:

– Columns (example: X = max(Y,Z))

– Expressions (example: X = max((Y-Z),(W-Z))

– Other functions (example: X = max(sqrt(Y),sqrt(Z))

 For a list of commonly used functions refer to the Important SAS Functions.pdf document

34

Where: Statement vs. option
 The where statement allows the user some more flexibility than the where option, in that it allows for

the usage of expressions and functions

 Thus, the following two codes will filter the same observations:

Obviously, the second code is more efficient since it allows us to apply our filters without having to
create the first_name variable

35

Date and Time – Format and Informat
 Important Date and Time Formats:

Format Input Result

DATEw. 7/25/1984 25Jul84

DAYw. 7/25/1984 25

DDMMYY10. 7/25/1984 25/07/1984

MMDDYY10. 7/25/1984 7/25/1984

DOWNAME. 7/25/1984 Wednesday

MONTH. 7/25/1984 7

MONNAME. 7/25/1984 July

QTR. 7/25/1984 3

TIMEw. 7/25/1984 2:29:32

YYQRw. 7/25/1984 84QIII

DATETIMEw. 7/25/1984 01JAN60:02:29:32

 Important Date and Time Informats:

Informat Input Result

DATEw. 25Jul84 8972

DDMMYY10. 25/07/1984 8972

MMDDYY10. 7/25/1984 8972

MONYYw. Jul-84 8972

TIMEw. 2:29:32 8972

YYQw. 84Q1 8972

DATETIMEw. 01JAN60:02:29:32 8972

Note: “w” stands for the width

36

Creating SAS Dataset – Date and Time – Format
and Informat

 Sample SAS Code: Date and Time Variable
data datetime;

 %let _EFIERR_ = 0; /* set the ERROR

 detection macro variable */

 retain Name;

 informat DOB mmddyy10.;

 informat DOB_time datetime18.;

 format DOB mmddyy10.;

 format DOB_time datetime18.;

 input Name $8. DOB DOB_time;

cards;

Pinaki 07/25/1984 25JUL1984:14:45:32

Tapan 07/04/1983 07Jul1983:14:45:32

Sourav 12/12/1982 12Dec1982:14:45:32

;

run;

 Sample SAS Code: Different Date Formats
data pink;

 %let _EFIERR_ = 0; /* set the ERROR detection macro variable

*/

 retain Name;

 informat DOB DOB_1 DOB_2 DOB_3 DOB_4 DOB_5 DOB_6 DOB_7 DOB_8

DOB_9 best32. ;

 format DOB date9. DOB_1 day2. DOB_2 ddmmyy10. DOB_3 mmddyy10.

DOB_4 DOWNAME. DOB_5 MONTH. DOB_6 MONNAME.

 DOB_7 qtr. DOB_8 time7. DOB_9 yyqr6.;

/* format DOB_1 day2.;*/

 input Name $8. DOB DOB_1 DOB_2 DOB_3 DOB_4 DOB_5 DOB_6 DOB_7

DOB_8 DOB_9;

cards;

Allstate 14690 14690 14690 14690 14690 14690 14690 14690 14690

14690

;

run;

37

Import Date Variable from CSV Itself
 Importing Date Functions:

The date variables are stored as numeric values. Its important to
import DATE variable directly from CSV file itself. This is

because the START DATE in SAS is ‘1JAN1960’, where as in CSV/
Excel, the START DATE is ‘1JAN1900’. Hence, the results will be

different if we import the date variable as Numeric Variable
and convert the Numeric variable to Date variable in SAS itself.

 Sample SAS Code:

data impor;

 infile 'C:\Temp\Desktop\Date_Time.csv' dsd

missover lrecl=1000 dlm=',' firstobs=2;

 retain Name;

 informat Name $6.;

 informat DOB mmddyy10.;

 format Name $6.;

 format DOB mmddyy10.;

 input Name $ DOB DOB_time;

run;

data impor;

 set impor;

 informat check best32.;

 format check mmddyy10.;

 check=DOB_time;

run;

38

Date and Time – Functions
 Important Date and Time Functions:  Sample SAS Code:

Function Input Result

datepart 25JUL84:14:45:32 7/25/1984

timepart 25JUL84:14:45:32 14:45:32

day 25JUL84:14:45:32 25

Today() 6/1/2009

Hour 25JUL84:14:45:32 14

minute 25JUL84:14:45:32 45

month 25JUL84:14:45:32 7

qtr 25JUL84:14:45:32 3

weekday 25JUL84:14:45:32 4

year 25JUL84:14:45:32 1984

datetime () 01JUN09:02:06:13

data datetime;

 set datetime;

 format Date1 mmddyy10. Time1 time9. Today1 mmddyy10.

Todaytime datetime18. ;

 Date1= datepart(DOB_time);

 Time1=timepart(DOB_time);

 Day1 = day(Date1);

 Today1=Today();

 Hour1= Hour(DOB_time);

 Minute1=minute(DOB_time);

 month1=month(Date1);

 Qtr1=qtr(Date1);

 Weekday = weekday(Date1);

 Year1=year(Date1);

 Todaytime = datetime();

run;

39

Date and Time – Functions (INTCK/ INTNX)
 INTCK function: This is a popular and powerful SAS function to

determine the number of time periods between two SAS dates. The form of
this function is: INTCK(‘interval’,from,to)

– Where: ‘interval’ = character constant or variable name representing
the time period of interest enclosed in single quotes

– “from” = SAS date, time or datetime value identifying the start of a
time span

– “to” = SAS date, time or datetime value identifying the end of a time
span

This function will return the number of time periods which have occurred
(i.e., have been crossed) between the values of the from and the to

variables.

 INTNX function: This is a popular and powerful SAS function to

determine a SAS date, time or datetime value for a given number of time
intervals from a starting value.. The form of this function is:

INTNX(‘interval’,from,to,position)

– Where: ‘interval’ = character constant or variable name representing
the time period of interest enclosed in single quotes

– “from” = SAS date, time or datetime value identifying the start of a
time span

– “to” = SAS date, time or datetime value identifying the end of a time
span

– “Position” = Position of the pointer

 Sample SAS Code:
data intervals;

 set datetime;

 format Date1 mmddyy10. Today1 mmddyy10. ;

 Today1=Today();

 Date1= datepart(DOB_time);

 INTCK_Cal=intck('year',date1,Today1);

run;

data intervals;

 set datetime;

 format Date1 mmddyy10. Today1 mmddyy10.

INTNX_Cal mmddyy10.;

 Today1=Today();

 Date1= datepart(DOB_time);

 INTNX_Cal=intnx('year',date1,4,’M’);

run;

40

Filtering Date and Time Variable
 Suppose you want to apply a “Subsetting Where” statement in a data step so that only observations with a value of the variable

DOB_time is that occurred after 4th July, 1984 will remain in the program. All you need to write is:

Declaring a Date Constant:

– where date1 > '04Jul1983'd;
The letter “D” next to the text string with the day, month and year instructs the SAS System to convert the string to the

appropriate SAS date value

Declaring a Time Constant:

– where time1 > '14:44:32't;
As with the date constant example given above, the letter “T” next to the text string with the hour, minutes and seconds instructs the

SAS System to calculate the appropriate SAS time value (number of seconds from midnight)

Declaring a Date Time Constant:

– where DOB_time> '04Jul1983:14:44:32'dt;
By now you’ve probably figured out that SAS will calculate the appropriate datetime value (number of seconds from midnight on

January 1, 1960)

41

DISCUSSION DOCUMENT

Day 2 – Sort and merge, Common procedures, SQL

Proprietary Information

"This document and its attachments are confidential. Any unauthorized copying, disclosure or distribution of the material is strictly forbidden"

Chicago, IL
Bangalore, India

www.mu-sigma.com

CONFIDENTIAL

42

PROC SORT
Definition: Sorts the observations in a SAS data set by the values of one or more

variables

PROC SORT DATA = <Input DSN> OUT = <Output DSN>

 NODUPKEY DUPOUT = <Output DSN for duplicate recs>;

 BY ascending/descending <variable list>;

RUN;

 SORT procedure can be used either to modify the original dataset or create a new sorted dataset

 SAS, by default, sorts the datasets in an ascending order, unless specified otherwise variables should be
mentioned in the same order as sorting is required

 Using NODUPKEY option without using the OUT = statement may destroy your original dataset and
duplicate records might not be available for any future analysis

BY: Sort values by one or more variables NODUPKEY: Remove Duplicates

DUPOUT: Store only
duplicates in a separate SAS

dataset

43

 Q: How is the dataset sorted if you try to sort by more than one BY variable?

DATA work.sample; /*create dataset*/
INPUT F_Name $ L_name $ Age Extn;
CARDS;
Eric Thompson 20 3324
Jack Smith 26 3421
Daniel M 22 2323

Jack Jones 25 4124

Jack Simpson 23 3265
;
PROC SORT DATA = work.sample; /*sort dataset*/

BY Age;

RUN;

Example:
PROC SORT

44

 Is a method of processing observations from one or more SAS data sets that are grouped or ordered by
values of one or more common variables

 SAS creates 2 temporary variables internally: ‘FIRST.<variable>’ and ‘LAST.<variable>’

‘BY’ Statement Processing (In a Datastep)

DATA work.sample;

SET work.Sample;
BY F_Name;

RUN;

 Their values are set based on whether an observation is

• the first or last one in a BY group

• neither the first not the last one in a BY group

• both first and last, as is the case when there is only one observation in a BY group

 Q: Which other automatic variable gets created by SAS when you run your code

45

MERGE statement is used to joins observations from two or more SAS data sets into single observations

MERGE Statement

Match Merging

– Match-merging combines observations from two or more SAS data sets into a single observation in a
new data set according to the values of a common variable.

– Sorting is necessary before Match Merging.

DATA <Output DSN>;

MERGE <DSN1> (IN=a) <DSN2> (IN=b);

BY variable-list;

IF a OR b;

RUN;

 Q: There can be variables with the same name (apart from the BY variable) in more than one input data
set; What will be the output?

 Q: How will you overcome the above situation?

46

Using ‘IF’ statement to subset dataset while Merging:

– While merging if you don’t use a ‘BY’ statement; SAS will merge the 1st observation from dataset A
and 1st observation from dataset B to form the 1st observation of the final dataset

– Do not miss out on the ‘BY’ statement. It might lead to useless results.

 Q: What happens if you don’t use a ‘BY’ statement in your MERGE?

DATA Work.Emp_final;

MERGE Work.Emp_Info (IN=a) Work.Emp_Sal (IN=b);

BY F_Name;

IF a AND b;

RUN;

MERGE

47

Mappings for Merge:

 If more than one dataset has multiple values for ‘BY’ variable (many to many mapping); SAS does not pick
up values for the variable in a defined order

 SAS registers a note in the LOG. No error is generated

 To avoid unknown outputs; remove the duplicate values from one dataset prior to merging

A

B

C

D

A

B

D

E

 Dataset XYZ Dataset LMN

A

B

A

D

A

B

D

B

Many to Many Mapping One to One Mapping

 Proc Sort – PDV Concepts – Many to many merge

 Dataset XYZ Dataset LMN

48

Before you dare to merge

1. Check if the key variable exists in both the datasets that are to be merged

2. The key variable should have the same format and length in both the datasets

3. Sort the files by the key variable

4. The key variable can repeat in only one of the datasets

5. If there are common variables other than the key variable in the dataset treat them appropriately

6. Always write a BY statement

7. Always write an IF statement

8. Subsetting variables and observations can be done while merging – need not write a separate step

49

Common SAS log notes and warnings

 NOTE: Missing values were generated as a result of performing an operation on missing values.

 NOTE: MERGE statement has more than one data set with repeats of BY values.

 WARNING: Multiple lengths were specified for the BY variable emp_id by input data sets. This may cause unexpected results.

 WARNING: The variable x in the DROP, KEEP, or RENAME list has never been referenced

 NOTE: Variable var1 is uninitialized.

 NOTE: Numeric values have been converted to character values at the places given by: (Line):(Column). 52:8

 NOTE: Character values have been converted to numeric values at the places given by: (Line):(Column).55:9

50

 SAS Procedure or a PROC step always starts with a the word PROC

 Some commonly used Base SAS procedures are listed below

Base SAS Procedures

Report Writing
Procedures

PRINT

FREQ

MEANS

SUMMARY

TABULATE

PLOT

SQL

Statistical Procedures

CHART

FREQ

MEANS

CORR

SQL

SUMMARY

UNIVARIATE

Utility

Procedures

EXPORT

IMPORT

APPEND

CONTENTS

DATASETS

SORT

TRANSPOSE

SAS Procedures – An Introduction

51

A typical SAS procedure has a few key words that are a part of the
syntax

Most SAS procedures require an input dataset which is specified using the DATA= option

VAR specifies the variables on which the procedure is applicable. If no variables are specified, then SAS will
automatically apply the procedure on all the variables.

WHERE allows usage of a particular filter criteria on the procedure.

 “Sales” is used to refer the SAS dataset to elaborate any SAS procedure going forward

Only a few most frequently used SAS procedures are covered in the training

 Further, not all options available on the SAS procedure is covered in the training

PROC <PROCEDURE NAME> DATA = <DSN Name> OPTIONS;

BY <Variable List>;

CLASS <Variable List>;

VAR ;

WHERE ;

RUN ;

52

PROC CONTENTS

PROC CONTENTS DATA = SALES OUT = VAR_LIST VARNUM;

RUN;

Name of the input data set

Option lists all the variables in the same
order as present in the data set

Name of the output data set will contain
the list of the variables with their formats

Q: What is the output if you don’t use the option “varnum”

PROC Printto

FILENAME printout 'c:\demo.txt‘;

FILENAME logout 'c:\demo.log’;

PROC PRINTTO

 print=printout

 log=logout new;

RUN;

Location to where a log should be saved

Option to print the log in the desired
location

Q: How do we return and procedure output to their default destination

53

PROC DATASETS

Q: How can we delete all the datasets in a library?

PROC DATASETS

 MEMTYPE = DATA LIB = WORK NOLIST;

 APPEND BASE = DATA = ;

 CHANGE old_name = new_name ;

 COPY IN = libref-1 OUT = libref-2 ;

 SELECT sas_files;

 DELETE sas_files;

RUN;QUIT;

Specifies the kind of files to process

Specifies the library

Option does not print any kind of output in the SAS output
window

Specifies the dataset to be renamed

Specifies the library to copy SAS datasets

Only specified datasets will be copied

Specifies SAS datasets to be deleted

 The APPEND command adds observations from one dataset to another

PROC DATASETS

 LIB = WORK;

 MODIFY DS_Name (LABEL = ‘new_label’);

 RENAME old_var_name = new_var_name;

 LABEL new_var_name = label_for_new_var;

 FORMAT existing_var_name COMMA11.2;

RUN;QUIT;

 PROC DATASETS should ideally be preceded by a lib statement

The MODIFY command gives you the ability to change a
specific library member or attributes of the library

member’s variables

Rename a variable in the specified data set

Label can be added to a variable

A format can be specified for a variable

54

PROC TRANSPOSE DATA = <DSN Name>

 OUT = <Output DSN Name>;

 BY <Variables>;

 ID <Variables>;

 IDLABEL <Variables>;

 VAR <Variables>;

RUN;

Specifies the variable whose formatted values
name the transposed variable

Creates labels for the transposed variables

Specifies the variable to transpose

Original Transposed

Example 1

Original

Transposed

Example 2

Q: In the above examples, identify the variables and relate them to the syntax

PROC TRANSPOSE

55

 For two-way tables, PROC FREQ can compute tests and measures of association

PROC FREQ DATA = SALES;

WEIGHT <Weight Variable>;

TABLES <Variable List> /

 MISSING NOROW NOCOL NOPERCENT ALL NOPRINT;

WHERE <Condition>;

RUN;

Option: Give different weight to the observations

Q: What option would you use to generate three way tables?

Q: How would you output the results of Freq procedure to a SAS dataset?

Option:

Missing: Treats missing values as a separate observation

Norow: Removes row percentages

Nocol: Removes column percentages

Nopercent: Removes cell percentage

PROC FREQ

PROC UNIVARIATE DATA = <DSN Name> <OPTIONS>;

 BY <Variables>;

 CLASS <Variables>;

 FREQ <Variables>;

 HISTOGRAM <Variables> / <options>;

 OUTPUT OUT= <DSN Name> <options>;

 PROBPLOT <Variables> / <options>;

 QQPLOT <Variables> / <options>;

 VAR <Variables>;

 RUN;

E.g. PLOTS, NORMAL

Information will be represented in the form of a Histogram in
the output

Probability plots for the distribution specified will be displayed

Quantile (Q-Q) plots for the distribution specified will be
displayed. It is used to compare the values with quantiles of a

specified distribution

PROC UNIVARIATE

 The UNIVARIATE procedure provides a variety of descriptive measures, high-resolution graphical displays, and statistical methods, which you can use
to summarize, visualize, analyze, and model the statistical distributions of numeric variables.

Q: For which variables will the histogram be displayed if no variables are mentioned in the “VAR” option of the “Proc Univariate” procedure

56

 PROC MEANS also computes

– Descriptive statistics based on moments and quantiles

– Calculates confidence interval for means

– Performs t – test

PROC MEANS DATA = SALES;

CLASS <Variable List>;

VAR <Variable List>;

OUTPUT OUT = <DSN Name> <Summary Procedure>;

RUN;

Example:

SUM(Variable) = New Variable 1

MEAN(Variable) = New Variable 2

MIN(Variable) = New Variable 3

MAX(Variable) = New Variable 4

Q: Which SAS dataset will contain the results without the use of “output out =“ option

Q: What SAS default variables which will be created in the output SAS dataset?

PROC MEANS

57

SAS and SQL terminology

SAS Data step Proc SQL

Dataset Table

Variable Column

Observation/ records Rows/ records

Append Union

Merge Join

How about differences in ease of use, Efficiency?

Depends on various factors

 Size of dataset

Operation performed etc.

58

Syntax of Proc SQL?

Very straightforward and extremely structured syntax

Highly scalable, from simple one row queries, to complicated queries with multiple sub-queries

 Possible to combine with all SAS functions (except the lag function)

Proc SQL <options> ;

- Multiple SQL statements (or queries) can be
put into a single Proc SQL

- You can have a series/collection of SQL queries
that are your entire program

- Think of the PROC SQL/QUIT; combination as
boundaries for a different coding environment

Quit;

proc sql;

create table tablename as

 select [distinct] column1, column2,

 [*], …

 from library.table

 where expression

 order by column1 etc.;

quit;

* = all columns

Theory Practical

59

Creating, Updating and deleting tables
The select statement

SAS Data step Proc SQL

Proc Print Data= First;
Run;

Proc SQL;
 Select * From First;
Quit;

Proc Print Data=First;
 Var Patient Age Losses;
Run;

Proc SQL;
 Select Patient, Age, Losses From First;
Quit;

How to create dataset using select statement?

 Through use of a “Create table tablename as” clause, can create:

– datasets/tables

60

Creating, Updating and deleting tables
Creating Table

SAS Data step Proc SQL

Data lib.new;
 set lib.old;
Run;

Proc SQL;
 create table lib.new as
 select * From lib.old;
Quit;

 “Create table tablename as” clause is used to create a new table called lib.new

We have used “select *” here, which means all variables will be selected in the resulting dataset.

61

Creating, Updating and deleting tables
Creating new Variables

SAS Data step Proc SQL

Data Second;
 Set First;
 new = old + 1;
Run;

Proc SQL;
 create table second as
 select *,old+1 as new
 From First;
Quit;

 Q: How do you update a variable name? Say renaming a variable.

 Q: How do you delete a table/ dataset using proc SQL?

62

SQL – Filtering, Ordering and Grouping
SELECT statement is used to retrieve data from a database

Clauses in Select

– Where

– Group by

– Having

– Order by

Operators

– Logical Operators

– Arithmetic Operators

– Relational Operators

– Special Operators

Functions

– Aggregate Functions

– String Functions

– Date Functions

63

SQL – Clauses in select
Where Clause

– Subsets the output based on specified conditions

– When a condition is met (that is, the condition resolves to true), those rows are displayed in the
result table; otherwise, no rows are displayed.

– You cannot use summary functions that specify only one column

Group by Clause

– Specifies how to group the data for summarizing.

Having Clause

– Subsets grouped data based on specified conditions

Order By Clause

– Specifies the order in which rows are displayed in a result table.

– ASC in order by clause orders the data in ascending order. This is the default order; if neither ASC

nor DESC is specified, the data is ordered in ascending order

– DESC in order by clause orders the data in descending order

64

SQL – Clauses in select

Operation SAS Data step Proc SQL

Filtering

Data lib.new;
 set lib.old;
 Where age>30
Run;

Proc SQL;
 create table lib.new as
 select * From lib.old
 where age>30;
Quit;

Ordering

Proc sort data=lib.old out=lib.new;
 by age descending;
Run;

Proc SQL;
 create table lib.new as
 select * From lib.old
 Order by age desc;
Quit;

Grouping

Proc Means Data=First ;
 Class desig;
 Var Wealth;
Run;

Proc SQL;
 Select desig, mean(Wealth) as Mean
 From First
 Group By desig;
Quit;

How clauses are used in SQL and Data steps?

65

SQL – Operators
 Logical | Boolean Operators

 Logical operators, also called Boolean operators, are usually used in expressions to link sequences of
comparisons

– AND

– OR

– NOT

Arithmetic Operators

 Arithmetic operators indicate that an arithmetic calculation is performed

– Multiplication (*)

– Division (/)

– Addition (+)

– Subtraction (-)

 Relational | Comparison Operators

– Comparison operators set up a comparison, operation, or calculation with two variables, constants,
or expressions. If the comparison is true, the result is 1. If the comparison is false, the result is 0.

– Equal to (=) , not equal to (<>) , not equal to (!=) , less than (<) , greater than (>), less than or
equal to (<=) , greate than or equal to (>=)

66

SQL Functions

PROC SQL;

 SELECT COUNT(*) as count, designation

 FROM employees

 GROUP BY designation;

QUIT;

Count(*): Count Function

*: All Records

Count: Alias name for count

67

SQL Functions
 PROC SQL supports all the functions available to the SAS DATA step that can be used in a proc sql select

statement

Because of how SQL handles a dataset, these functions work over the entire dataset

Common Functions:

◘ COUNT

◘ DISTINCT

◘ MAX

◘ MIN

◘ SUM

◘ AVG

◘ VAR

◘ STD

◘ STDERR

◘ NMISS

◘ RANGE

◘ SUBSTR

◘ LENGTH

◘ UPPER

◘ LOWER

◘ CONCAT

◘ ROUND

◘ MOD

1. PROC SQL does not support LAG, DIF and SOUND
functions.

2. This is not a comprehensive list of functions.
There are thousands of functions for different
needs

3. The functions can be used with Macro variables
in SAS

4. There are numerous functions for string
operations – See Appendix.

Notes

 Q: Subset the second name from the “name” variable in the employees table where the age is
between 25 and 50. Also, create a new variable which adds 10 to their age and order by this age.

 Q: How do you find the location of a particular character in a string in a variable?

68

PROC SQL;

CREATE TABLE SALES AS

 SELECT

 CustNum, Brand, count(distinct EDC) as No_Items, sum(LineVal) as Total_Sales

 FROM

 S.Transaction_Master

 Where

 TranType = "IN" and LineVal > 0

 GROUP BY

 CustNum, Brand

 HAVING

 No_Items >= 2 or Total_Sales > 50

 ORDER BY

 Custnum, Total_Sales DESC;

QUIT;

Subseting data:

PROC SQL;

CREATE TABLE <TABLE_NAME> AS

 SELECT

 <VARLIST>

 FROM

 <PARENT_TABLE>

 Where

 <VAR_USED_SUBSET> in (SELECT DISTINCT <VAR_USED_SUBSET>

 FROM <TABLE_W_VAR_USED_SUBSET>);

QUIT;

PROC SQL

69

Combining Datasets: Joins

Full Join Inner Join

Left Join Right Join

70

Joins: Full Join

Records From Both datasets That Match + All Others

SAS Data step Proc SQL

Proc Sort data = d1;
 By var;
Run;
Proc Sort data = d2;
 By var;
Run;

Data d3;
 Merge Claims(in = a)
 members(in= b);
 By var;
 If a OR b;
Run;

Proc SQL;
 Create table d3 as
 Select *
 From d1
 Full join d2
 On d1.var=
 d2.var;
Quit;

71

Joins: Inner Join

Only Those Records From Both datasets That Match

SAS Data step Proc SQL

Proc Sort data = d1;
 By var;
Run;
Proc Sort data = d2;
 By var;
Run;

Data d3;
 Merge d1(in = a)
 d2(in= b);
 By var;
 If a and b;
Run;

Proc SQL;
 Create table d3 as
 Select *
 From d1
 Inner join d2
 On d1.var=
 d2.var;
Quit;

72

Joins: Left Join

Records From Both datasets That Match + All Remaining Records In First Dataset

SAS Data step Proc SQL

Proc Sort data = d1;
 By var;
Run;
Proc Sort data = d2;
 By var;
Run;

Data d3;
 Merge d1(in=a)
 d2(in= b);
 By var;
 If a;
Run;

Proc SQL;
 Create table d3 as
 Select *
 From d1
 Left join d2
 On d1.var=
 d2.var;
Quit;

73

Joins: Right Join

Records From Both datasets That Match + All Remaining Records In Second Dataset

SAS Data step Proc SQL

assume 2 datasets sorted…

Data d3;
 Merge d1(in=a)
 d2(in= b);
 By var;
 If b;
Run;

Proc SQL;
 Create table d3 as
 Select *
 From d1
 Right join d2
 On d1.var=
 d2.var;
Quit;

