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What are we going to Learn today ?

* Recap - fit()

* Models that are not just limited with .fit()

* Gaps in Most of the ML Solutions in the delivery

* Keep MLOPs as the SOP

* Build visibility through Model Explainability

* Quantify the Model’s Uncertainty

* Monitor your Model’s health

» Package your Models

« ML Ethics

* Don't Stop Learning — Keep upgrading your Models
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Typical Model Development

Fit() brings the Confidence on your Solution in the early stage — Let’s recap

the typical ML Development Activities

* muPDNA ( Problem
Definition)

» Data Discovery

* EDA and Hypotheses testing

from sklearn.linear_model import LinearRegression
model = LinearRegression(fit_intercept=True)

model.fit(x[:, np.newaxis], y)

xfit
yfit

np.linspace(9, 16, 1000)
model.predict(xfit[:, np.newaxis])
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Deploy as Notebook
Pipelines

Deploy as Web Apps (Real
time)

Post Deployment Analysis
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Typical Model Development

Let's Not underestimate.....| Most of the time, Feature Engineering and @

Hyperparameter tuning are the real trump cards Mu Sigma
muPDNA ( Problem Definition) . Deploy as Notebook Pipelines
Data Discovery . Deploy as Web Apps (Real time )
EDA and Hypotheses testing . Post Deployment Analysis

Feature Eng.

from sklearn.linear_model import LinearRegression
model = LinearRegression(fit_intercept=True)

model.fit(x[:, np.newaxis], y)

xfit
yfit

np.linspace(9, 16, 1000)
model.predict(xfit[:, np.newaxis])

Hyperparameter
tuning
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Shortcomings of the Current Approach

Addressing the Gap is all we need

Where do we spent our more time ?

- Data Preparation

- EDA (Not Really — But Ideally we should)

- Model Development and Improvement ( In a
Closed Space : Not Much Exploration)

What do we focus much ?
- Getting better performance ( Mostly by
considering wrong metrics )

What do we consider as success ?

- Accuracy : (is all we wanted

- What about Optimization / Computation
Efficiency then?

Current State
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Identified new ML Solutions
Explainable Models

Models under Our Radar
Reliable Predictions
Continuous Training

Easier Portability

Enhanced Latency

Ensured Ethics
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Unique ML Solutions

Models that needs more handcrafting and solve unique problems — ML is
not at all a Single Layered Solution

Measuring the real

Cause - Models that can capture the real causal impact between the variables

Handling

Unstructured Data - Models that can handle multi modalities

Probabilistic - Yet

. .o - Models that can be trained in Bayesian wa
Realistic i i

Hyper
Personalization

- Models that can bring personalization and handle cold start problem

Mu Sigma Confidential
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Explore Vs Exploit

Trade off between Exploitation and Exploration of Machine Learning @
Solutions - Unique Solutions to Show Off © Mu Sigma
Fulfilment Growth

A

v

Exploitation Equilibrium Exploration

XGBoost Graph Machine Learning

s paimE il oeartilineay Causal ML and Probabilistic Models
Regression

Very Old ways to solve Unstructured data problems Transformers and Self supervision Models

Graphs / Digital twins / Reinforcement

Sl adaption of Cutting edge technologies .
ower pti utting edg gi LT
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Explore Vs Exploit

Trade off between Exploitation and Exploration of Machine Learning @
Solutions - Unique Solutions to Show Off © M Sigma
Markov Chains for Marketing analytics Vision and Language Modelling for Hyper personalization
|
( -Complete the Look
~ ~
b
-
C. compatible products
0.7 “Shoes”
Data Query Output
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Explore Vs Exploit

Trade off between Exploitation and Exploration of Machine Learning @

Solutions - Unique Solutions to Show Off ©

Reinforcement Learning for Dynamic Pricing

Sales AirlineSimulator

poiicies | . Action

Time step

Our price

==
>

Compet‘itor price w
Wiz

T

Time period: 16
Loadfactor: 20

a Demand t-1: 2
@ i’.llice t-10: 50

Game state + results

Mu Sigma Confidential

Mu Sigma

Twinning through Simulations

System Dynamics

Discrete Event

Agent Based



Redefining the Focal Point

Focusing the Post Model Development Activities to enhance the ML @
Solutions Mu Sigma
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MLOps — the SOP

MLOps as the Standard SOP to build ML Solutions — Enabling Clients to @
adapt/explore MLOps powered Solutions Mu Sigma

Data Labelling and Preparation Al/ML Model Development Model Evaluation

( )

Improve Data Quality and Consistency

Transformer Model
Configuration

Data Annotation Quality
Check

Model Evaluation

Model Training

Model Packaging

Model Reconfiguration Hypergaramgter Tuning

Data Labelling / Annotation Model Deployment

/ EDA / Hypothesis testing

Data & Model Experiment Pipeline Model Retraining l
Versioni !
Data Collection & Curation ersioning Tracking EDUCIRELTES ﬁ Model Monitoring

MLOPS Control System

Tools and Frameworks Required

C:.E‘" @ Spacy H20.ai & Transformers M O PyTOFCh >° Arthur @
A4

~ 11| EVIDENTLY Al nanmyML
° . t . .
prOdI gy o). come Weights & Biases O FastAP| < seLpon
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MLOps — the SOP

Explore the MLOPs Landscape

Mu Sigma Confidential

DATA PREPARATION

Data Exploration & Processing

fed Paxata ) TRIFACTA

alteryx sdatabricks
DSuperb Al 1+iguazio

[[Mbole @ §sas

Data Version Control

-

Feature Engineering and Storage

ewurunnaas Cwreaturet

TestoN o Google Feast

Data Labeling

scale  Ib Labelbox

LT P

i Google Al A

Data Ouality Checks

s; great_expectations

ML / Al Infrastructure

MODEL BUILDING

Hosted Notebooks Management
Bl A sdatabricks CLOUDZRA

Model Management, Version Tracking and Storage

@databricks G o ¥ Google Al FA 1+ iguazio
ALGORITHMIA {Foommo Qi §sas
— T ——
Weights & Biases  #* comet Tens:gsoard m|f/ W

Model Optimization Hyper Parameter

B sIGoPT Weights & Biases  [[13] Smesen anyscale " comet

Auto ML

H,00  DataRobot m # Google Al P o :::'

Model Training
B PN i GoogeAl  ( Kubeflow anyscale

o 586 {+iguazio 7 PerceptiLabs

Mottty
@ fiddler ® ‘
TensorBoard

‘ ”
TensorBoard  Streamlit

PRODUCTION
A arize

DataRobot Other startups

Model Compliance & Audit

@ fiddler  §sas

Other startups

Model Deployment and Serving
Amazon
E“"""“' # Kubeflow

ALGORITHMIA DataRobot

i Google Al P

# PerceptiLabs 1+iguazio
Gsas

Model Validation

Aarize

@ fiddler §sas
Other startups

Platform Specific Model Builds

£ OctoML

Mu Sigma
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Visibility through Explainability

Building Visibility through Model Explainability — Make your Black box @
Models into White/Glass Box Models Mu Sigma

Linear Models

| l - Interpreting the Association
Y, = Bo + B X, not the Causation hicH A LA NETORKS
T T - But We can use Causal ML T “@.... _ ENSEMBLE METHODS
. .-[}{GEGDS!:. Random Forest)
g Practices @ KERNEL BASED METHODS
(Su pport vector Maching)
>
CARTS E ".___G RAPHICAL MODELS (Clustering)
-]
o — 8 .__ K-MEAREST MEIGHBOURS
1772 3772 E?;uél;l:,\lﬂzJ‘;7?2 9772 1 ',?7 “":‘;;”7'““ 1 CE.'? 1,777 1?77 2‘!77 237? 2577 q ) -
p—— d @ DECISION TREES
- Shapely / LIME Values g :
Highly Interpretable Models ~ LINEAR REGRESSION
i Relationship :
Deep Learning Models CLASSIFICATION RULES
FLOW
True Label Label Label Score ‘Word Importance )-
TR —— == 7o et llon tho N Low MODEL INTERPRETABILITY HIGH
¢ —

Original Image Attribution Magnitude

Text Contributions: 7.93
Image Contributions: 3.12
Total Contribution: 11.05

—
Mu S/gm, - 00 02 04 06 08 10 13



Visibility through Explainability

Why Uncertainty matters ? @

Mu Sigma

Decision Making Process should be supported with a Prediction with a level of Confidence
You may tell , We have Error metrics to measure accuracy .

But all of them are global level of confidence metrics.
So, it is necessary to look for

“Local Levels of Confidence at the Sample Level “

Hidden Hidden
layer layer

|
What If, the input image is a Bird

?
It should be
100% Cat :(

Will it be classified as “Dog” or

|
|
|
I
|
| ﬂcatn ?

YES, the Neural network still predicts as “Dog/Cat” with a high probability score on unseen images known

as “out-of-distribution” samples.
Mu Sigma Confidential 14



Visibility through Explainability

Model Calibration and Uncertainty Quantification to ensure confidence and @

reliability of your models

A Traditional deterministic model

Fixed parameter 1

Original uncertain . /\
Choose one
parameters parameter Fixed parameter 2 >‘ Model | }

value

Uncertain parameter 1 )

/\ Fixed parameter 3

Uncertain parameter 2

A 8 Uncertainty quantification of the model

Uncertain parameter 3 Uncertain parameter 1 W

Use the
complete

)

Uncertainty
quantification

distribution 1, certain parameter 2
Model

J

-

Uncertain parameter 3

Mu Sigma Confidential

Mu Sigma

Any ML Model Yp ( Point Estimate)

Calibration :

Calibrated probabilities means that the probability reflects the
likelihood of true events.

- Plat Scaling

- Isotonic Regression

Uncertainty Quantification :

Intervals around Prediction — Not the typical confidence interval

x
Mird painting: 1Min $

x
House in San Francisco: 950k $

.

| * |
Mird painting: [650k $, 1.35MIn $]
| " |

I I
House in San Francisco: [800k $, 1.1MIn $]
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Model and Data Monitoring

Monitoring to ensure robust ML Pipeline — Measure Post Development @

Performance and Drift Metrics

Training data with'
decision boundary

P(Y|X)
Probability of
y output
given x input

Mu Sigma Confidential

Concept Drift

P(Y|X) Changes
Y D [ —— ? ~° &
O . . O .\“ e
L Lt L . O“‘
@9 o™ " e
@ @0 ® O ® o ® O

Training data with

e Reality/behavioral o
decision boundary

change

» Relationships P(Y|X)
change, not the Probability of
Input y output

given x input

Mu Sigma

Data Drift*
® Label Drift
...... Qe ® e Output data shifts
e ‘ @) e P(Y) Changes
@) @ Feature Drift

) L@ e Input data shifts

e P(X) Changes

Data changes
Fundamental
relationships do
not change

Many Statistical and Information theory related metrics to measure the drifts
Entropy , Wasserstein Distance , Kolmogorov Smirnov test , Shannon Entropy , Chi Square test
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ML Ethics

Ensure ML Ethics - Leap into Fairness, Bias and Model Privacy @

Mu Sigma

e e Feotainer Critical solutions in Fraud / Finance / Healthcare
User/Business . . .
] o L 1 { domain needs the well balanced Fairness and Privacy
II:actainBiaasn . ‘ -ﬂi‘::et‘m:: TSR | Data Bias
Bﬁ:s r:itigati:n B?a‘s l:iltigati:n " Checking
| A I
Pre-processing — TrainingData — Build —— Test —* Deploy ———* Feedback
e g\—?’ /\l/ML
% = @ @ [%E 5 SECURITY FRAMEWORK

GOVERNANCE

TY

Responsible Al/ML Models
Explainable Al/ML Models

9

VENDOR DILIGENCE

PRIVACY
RELIABILITY
CONSISTENCY
TRACEABILI
SAFETY

VULNERABILITY MANAGEMENT

DATA MANAGEMENT
OUTPUT
VALIDATION
MODEL MANAGEMENT

QUALITY
CONTROL

Reusable Al/ML Models
Orphaned Al / ML Models

Mu Sigma Confidential
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Continuous Learning

Continuous Learning along with the Existing Continuous Integration and >
Continuous Deployment Mu Sigma

Time to retrain!

1
Model ML | Ops

l analysis i
1
T |
A Orchestrated experiment :
i
Accuracy Pipeline
Data Data Data Model Model Model Source deployment
analysis ? validation 2 preparation training evaluation validation ~— code — r:;::i::ry_)
i
0ffline i
extract |
Accepted | |
p f H : experimentation/development/test i
h i N L
erromancs { H staging/preproduction/production
y \ : Feature
threshold Y, ~ — store
T s e s — : Model Trained
registry ace
T i
Batch : *
fetching Automated pipeline
Retraining ' D: Model
. : Data Data Data Model Model Model ? serving
Plpellne extraction °~ validation @ preparation training ° evaluation © validation
Triggered
Trigger ML metadata store
Performance Prediction
MORAEOring [ e LG
ES
— -
Time(month)

Mu Sigma Confidential 18



Questions....?
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Looking for ML Solutions/Help...?

Reach out to mel....... :)
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Thanks for joining...!
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Appendix...
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