Game Theory, **Breaking Bad** &

Ice-cream Wars

Prisoners Dilemma

Prisoners Dilemma

Conditions-

- If you both holdout, they get 1 year in jail
- If both confess, they get 2-year jail
- If only one person confesses, that person goes free, and the other person gets 4-year jail for holding out

Game theory is the study of mathematical models of strategic interaction among rational decision-makers.

Applications-Psychology, Evolutionary Biology, War Strategy, Politics, Economics, Business, Policy Making

P	
Ğ	

Hold OutConfessHold Out-1Confess0*-2*

Agenda

- Nash Equilibrium
- Decision Theory vs Game Theory
- Approach
- Mix Strategy algorithm
- Infinite Games

Game theory is the study of mathematical models of strategic interaction among rational decision-makers.

Applications-Psychology, Evolutionary Biology, War Strategy, Politics, Economics, Business, Policy Making

Strict Dominance N.E-Confess > Holding out

	Hold Out	Confess
Hold Out	-1,-1	-4 , 0*
Confess	0*,-4	-2* , -2*

Multiple N.E with Various dimensions in real life

Nash Equilibrium (John Nash)- Optimal outcome of a game where there is no incentive to deviate from the initial strategy(No Regrets Strategy)

Monte Hall problem

Will you switch?

Decision Theory vs Game Theory

Decision Theory (Static)	Game Theory (Dynamic)
Make best possible decision from given data	Your actions(or thinking) affect what others will do. Anticipate reaction from others, make best decision
Ex- "Will stay up late for faster internet"	"Everyone will stay up late for faster internet and slow it down. Therefore, wake up early instead"
'Sell drugs to make money'	'Will make enemies while selling drugs. Think strategically at every step to stay ahead and keep his family safe'

Scene 1:

Krazy 8 held hostage while trying to kill Walt and Jesse. Walt was deciding what to do

LET HIMLIVE IT'S the MORAL thing to Do ENTIRE FAMI VOU LET Him -JUDED/ChRISTIAN PRINCIPLES YOU ARE NOT A MURDERER Sanschity of LiFE

Decision Theory (Static)	Game Theory (Dynamic)
Moral, Guilt, Principles	Repercussions if Krazy8 lives
Limited data, trying to make best possible decision	Asses how would he would react on his decision

Scene 2:

Jesse plans to kill Tuco. Walt asks him details of the plan

Decision Theory (Static)	Game Theory (Dynamic)
Get gun. Shoot Tuco	How? How will his people react? What if you don't shoot him right? Have you ever used gun before?
Makes plan with data	Anticipating Tuco and his people's reaction.
Result-Very difficult	Will need more sophisticated attack

Scene 3: Mike pays money to prisoners in custody. Hank figures out that the operation is still on-going

Blowfish, Mutually Assured Destruction

Evil Account

Performance(out of 100)=random.randrange(0, 80) + X

You have opportunity to get extra points(X)

Conditions-

- Select whether you want 5 or 20
- If more than 20% people pick 20, no one gets any points
- Selections would be completely anonymous to rest of the team

Strategy-

If we cooperate, everyone can get at least 5?

Other's picking 20 >20% <20%</td> =20%

Your Pick	5 Points	0	5	5*
	20 points	0*	20*	0

		Other's picking 20		
		>20%	<20%	=20%
Your Pick	5 Points	0	5	5*
	20 points	0*	20*	0

5-5	0 extra
20-5	15 extra

Bonus Motivation

Conditions: Employees reaching a target P score of 80 would receive 2L bonus

Modification: Employees reaching a target P score of 90 would receive 2L bonus

What will happen if there are 3 bonus bands?

Ice-cream Battle

Socially Optimal Solution

Day-3

Nash Equilibrium

Clustering of stores, companies, stalls etc

Conditions: I cut, you choose

min(x, 100-x) 50 0 100

A: Gets min(x, 100-x)

Splitting Cake – 3 people

Conditions: Person A cuts a slice, Person B can reduce it further, Person C can reduce it too. Last person to cut gets the slice

Last Diminisher method

If anyone makes a portion lesser than 30g, they end up with less than even split

If anyone makes a portion bigger than 30g, the last person will get more than an even split

Matching Pennies

Conditions-

- You and your friend simultaneously reveal a coin
- If both show head or both show tails, you get Rs. 100 from him
- If one shows heads and other shows tails, you pay him Rs. 100

	Player 2		
		Heads	Tails
Player 1	Heads	(100, -100)	(-100, 100)
	Tails	(-100, 100)	(100, -100)

Matching Pennies

Conditions-

- You and your friend simultaneously reveal a coin
- If both show head or both show tails, you get Rs. 100 from him
- If one shows heads and other shows tails, you pay him Rs. 100

Matching Pennies- Mixed Strategy Algorithm

Matching Pennies- Mixed Strategy Algorithm

Player 1's Mixed Strategy

$$EU_L = EU_R$$

 $EU_L = f(\sigma_U)$ $\sigma_U^{= \text{Probability that P1 plays Up}}$
 $EU_R = f(\sigma_U)$

Player 2's Mixed Strategy

$$EU_U = EU_D$$

 $EU_U = f(\sigma_L)$
 $\sigma_L^{= \text{Probability that P2 plays Left}}$
 $EU_D = f(\sigma_L)$

Player 1's Mixed Strategy	Player 2's Mixed Strategy
$EU_L = EU_R$	$EU_U = EU_D$
$EU_L = \sigma_U(-3) + (1 - \sigma_U)(1)$	$EU_U = \sigma_L(3) + (1 - \sigma_U)(-2)$
$EU_R = \sigma_U(2) + (1 - \sigma_U)(0)$	$EU_D = \sigma_L(-1) + (1 - \sigma_U)(0)$
$\sigma_U = 1/6$	$\sigma_L = 1/3$
If P1 plays Up 1/6 times and down 5/6 times, P2 is indifferent to P1s moves	If P2 plays left 1/3 times and right 2/3 times, P1 is indifferent to P2s moves

<($\sigma_U = 1/6, \sigma_D = 5/6$) , ($\sigma_L = 1/3, \sigma_R = 2/3$) >

Infinite Prisoners Dilemma

Conditions- Goes on for infinite duration

Grim Strategy-Cooperate then defect forever

Grim Trigger- Point after which they would defect forever

 δ (Discount Factor) = Measure of how much the Players care about future

Equilibrium payoff= $3+3\delta^1+3\delta^2+3\delta^3$

Defection payoff= $4+ 2\delta^1 + 2\delta^2 + 2\delta^3$

Infinite Prisoners Dilemma

Conditions- Goes on for infinite duration

Grim Strategy-Cooperate then defect forever

Grim Trigger- Point after which they would defect forever

 δ (Discount Factor) = Measure of how much the Players care about future

Applications: Businesses, Trade Wars, Military etc.

Equilibrium payoff= $3+3\delta^1+3\delta^2+3\delta^3$

Defection payoff= $4+ 2\delta^1 + 2\delta^2 + 2\delta^3$

 $\frac{\text{Cooperation if}}{\text{Eqm. payoff} >= \text{Def payoff}} \qquad \delta >= 1/2$

- Strategic decision making when everyone around is smart(Prisoners Dilemma)
- How to stay least affected from other people's strategy(Payoff matrix, Mix strategies)
- Realising when to switch strategies (Grim triggers)