Thursday Learning Hour

Deep Q Learning

Prabakaran Chandran

25 March 2021

Agenda:

» Reinforcement Learning — A small Recap

» What is Q Function?

» Traditional Q Learning

» Deep Learning - overview

» Deep Q Learning - Architecture and Learning Algorithm
» Applications and Characteristics

Reinforcement learning - Recap

Action

&

-
A

A

n

|

t

Observation

Reward

Transition

>
09
)
>
—+
Re—

Reinforcement learning - Recap

Action

Transition

Reward I

Reinforcement learning - Recap

Transition

<

Markov Reward Process: o

0.2 | 0.1 0.7
0.5 |04 | 01
04 | 0.2 0.4
0.1 0.2 | 0.6 0.1
0.1 0.3 0.3 0.1

=)
[

0.1 0.1 0.6

— Tl TMmMmMOIO|®|>

Possible State change

(process / Chain) ” . . . :
Each Transition will have its own reward point, Reward point can

be positive or negative depends on their properties.

Each State can have a value, which is expected return by being in
the state.
Ex: Value of A=5 + 1 = 6(Expected Return)

<

Markov D

Ision Process:
+1

At A (B, Right) and A(D,
down) are the possible
actions

JD can select any one of
the action (Decision he
has to take)

He can take any Decision from the available action space, but

there can be a negative reward too. This selection of action

depends on Jeffery’s Behavior (Policy)

Possible
Decisions by
selecting the
Actions at each
state.

This is what we
Jeffery need to
follow to have
more reward.

How can he
learn this ?7?

By solving this
MDP
Enviornment

2277 MHax Fitness: 4322

Few
Intuitive
Scenarios

Episod

How to Create that Strategy?

* Inordertoreach the Strategy, Solution is needed for the
Environment.

* It means toreach the Optimal Policy, MDP has to be solved

* Optimal policy : m* = argmax E(R/m), the policy which gives more
return

* How to reach optimal policy? = Solve the Environment

How to Solve the Environment/ MDP ?

There are two ways:

Action

®
A~
Agen

n
|

8

Action Al from (A1, An)

Observation

| need to increase my
Rewards

| need a Strategy

1. Go With the Cheat Sheet : Model-based RL uses experience to constructan internal model of the transitions
and immediate outcomes in the environment. Appropriate actions are then chosen by searching or planning

1. Learnon the Go: Model-free RL, on the other hand, uses experience to learn directly one or both of two

simpler quantities (state/action values or policies) which can achieve the same optimal policy

Model Free Learning:

In Model-free learning the agent relies on trial-and-error experience for setting up the optimal policy.

Agent

Value Iteration | Policy Iteration

| !

Learn Policy Directly
instead of Statesand
Actions

Learn about States
and Actions

Evaluate the Value

function of State/

Action, Select the
Optimal State/ Actions

|

Evaluate the Policy
function and Improve
the Policy

Optimal Policy — The
strategy we want

Learn through the Value Function:

V7T(s) = E[Rt s = S]

» Total Expected Return From the state/ state— Action while
following a policy

* To measure How good is a stateto be in? / How good is an
action to take?

* Two Types of Value Functions are there —One is to evaluate
State, another one is to evaluate an Action (Q Function)

e Action Value function defines the Quality of an action (A1)
taken in a given state(s1)

Q" (s,a) = E[Rt st =s,ar = @]

Q(s,a) =r+ymax Q(s', a’)

a

0.5 0.5

1.0 1.0

1.0

V(A) = (0.5 * 0) + (0.5 * 1)

=0.5

V(D)=(1.0*1)

1

V(G) = (1.0 * -1)

1
—h

Learn through the Q Value Function:

Q" (s,a) = E[Rt | st =s,a4 = @]

Bellman Equation

Q(s,a) =r+ymax Q(s",a’)

* This Q Function help us to bring the Optimal State— Action pair because of its Greedy Behavior
* Quality here represents how useful a given action is in gaining some future reward.

e By lteratingthe Q Value for all the State— Action pair until we reach the convergencein policy
* This sort of Q Value iterationis called as Q Learning

* For Every step Q Value will be updated based on the Evaluation

* |If we have a Table of Q Value for each State— Action pair, An Agent Can use that as a Cheat Sheet.

Q Learning - Q Table iteration

In Traditional Q Learning Method, Objectiveis to createa Exhaustive Q Table

An Agent use the Q table as a Cheat sheet to Take state transition by selecting correct Action

Temporal Difference Based Update Rule is used here.

Initialized

Actions

Q-Table
South (0} North () East (2) West(3) Pickup(4) Dropoff(5)

Qir1 = Qf +AQ ;New Q = 0ld Q + Temporal Dif ference

0 0 0 0 0
temiporal differenos 5 Y E : & : '
- i - States = 327 0 0 0 0 0

fei I , :

2 (ﬁz:ﬂr}*—f?{ﬁ'hﬂe:l—- rx : ™noT i ' mﬂx'—?[-‘iuhﬂ} —Q{-?rrﬂr} :

el o e . e’ .
ald walae learning rate reward diseount [wclor) " old valwe 0 0 0 0 0

estimate of optimal feture value
- T
i vl (lemporal differenee Large] Yraining

Initialize Q ‘
Q-Table g
South(0) North() East2) West(3 Picp(4) Dropoff(5)

~(Choose action from Q | 3 Q Learning Starts from Arbitrary Q Table 0 g 5 : : -

l . » Initial Action taken Randomly o . . | . |
[PEﬁDrT acnon] » Reward will be measured for the current State SR TR 230108105 197092096 -230357004 -220591839 103607344 -8.5583017
(Measure Reward | action pair and Future State Action pairs N | |

996984239 402706992 1296022777 29 332877873 338230603

» QValue will be update

Deep Q Learning : Need of Deep Architecture

 Computation: Reinforcement learning can be sufficiently applicable to the environment where the all achievable
states can be manged (iterated) and stored in standard computer RAM memory.

* Number of States: However, the environment where the number of states overwhelms the capacity of
contemporary computers (for Atari games there are 12833600 states) the standard Reinforcement Learning
approachis not very applicable.

* Furthermore, in real environment, the Agent has to face with continuous states (not discrete), continuous variables
and continuous control (action) problems.

e Bearing in mind the complexity of environment the Agent has to operate in (number of states, continuous control)
the standard well defined Reinforcement Learning Q — table is replaced by Deep Neural Network (Q — Network)
which maps (non — linear approximation) environment states to Agent actions.

* Network architecture, choice of network hyper parametersand learning is performed during training phase
(learning of Q — Network weight).

Deep Q Learning : Architecture

State

Action

State

input

Q-Learning

Q-table

input

input

>

Q Table will be used as look up
table / cheat sheet after
training/iteration

Deep Neural Network will be
used for Q Function
Approximation

Output)
— > Q-value of Action1

@]
WP, Q-value of Action2

Output)
—— Q-value of ActionM

Deep Q-Learning harness the
power of deep learning with so-
called Deep Q-Networks, or DON
for short.

In this scenario, these networks
are just standard feed forward
neural networks which are
utilized for predicting the best Q-
Value.

Advanced DQN networks use
CNN layers to capturethe states
from Visual Environment (
Games)

In order for this approachto
work, the agent has to store
previous experiences in a local
memory, but more on that later.

At the end Action with Max Q Value will be selected and Agents will
move to next state. best_action=arg max(DQN predicted Q-values).

Deep Learning : overview

X1

activation
functon

net input
el

& ‘i X2

activation

transfer
funiction

. 0
o trreshald

layer 2 (hidden layer) layer 3 (hidden layer)
aptd _ an®
AW

layer 4 (output layer)

N
e
N7

7
Al

Weight update

Backpropagation

Optimization such as Gradient Descent

Calculation of cost function

Lcss

— [radi
vl S

Deep Q Neural Network: Architecture

€15y, Ay 4

QUSt, A4) = Q51 Ay) + aRysr H16QU .H',-..rrr|—

» DQN is not a Supervised Learning , We don’t have labels to train

» The targetis continuously changing with each iteration.

» Let’sinclude a copy of Q Network every iteration

» The first network, which is refereed to as Q-Network is calculating Q-Value in the state St.

» The second network, refereed to as Target Network is calculating Q-Value in the state St+1.

» the Q-Network retrieves the action-values Q(St,a).

» At the same time the Target-Network uses the next stateSt+1 to calculate Q(St+1, a) for the Temporal
Difference target.

» In order to stabilize this training of two networks, on each N-th iteration parameters of the Q-
Network are copied over to the Target Network

Deep Q Neural Network: Experience Replay

DON Loss

r
max Qisia’; 8°)
Target

N updates Q MNetwork

* We already mentioned that the agent, in order to train neural
networks, has to store previous experiences.

* The naive Q-learning algorithm that learns from each of these
experiences tuples in sequential order runs the risk of getting
swayed by the effects of this correlation.

* Deep Q-Learning takes this to the next level and uses one more sore
concept to improve performances — experiencereplay. o

* This conceptis used for one more reason, to stabilize training
process. In a nutshell, the agent uses random batches of

experiences to train the networks. e
* Experience replayis the memory that stores those experiences in
a form of a tuple <s, s’, a, r>: 9 @
» s—Stateof the agent
» a - Action that was taken in the states by the agent PARAMETERS L_w
» r—Immediate rewardreceived in states for action a @
> s’ — Next state of the agent after states

Deep Q Neural Network: Training Algorithm

Inmitialize network @
Imtialize target network Q
) Initialize experience replay memory D
* Bellman Equation: Initialize the Agent to interact with the Environment

Q(s,a) =r +ymax,Q(s',a") while not converged do

/* Sample phase

€ + setting new epsilon with e-decay

Choose an action a from state s using policy e-greedy(Q)

Agent takes actlon a, observe reward r, and next state s’

Store transition (s,a,r,s’,done) in the experience replay memory D

12_loss = (predicted — actual) **2

* Loss function (squared error):

L =E[(r +ymax,Q(s',a’) — Q(s, a))z] if enough experiences in D then
v /* Learn phase
Sample a random minibatch of N transitions from D
for every transition (s;,a;,ri,s.,done;) in minibatch do

target

if done; then
N NN | Yi =Ty
» actual=R+ymaxA Q(S’, A’) else
Yi = Ty T yMaXgreq Q(S;, a’)

» R - the currentimmediate reward end

» S° - Next state end

> max A Q(S’, A’) > max(NN output list of Calculate the loss £ =1/N Y01 (Q(s;,a;) — v;)?

Q-values) Update @ using the SGD algorithm by qlinimizing the loss L
Every C' steps, copy weights from @ to @

end

» y - thediscount factory - {0,1} end

Deep Q Neural Network: Applications

Retail
1. Dynamic Pricing
2. Recommendation systems

Entertainment
1. Gaming platforms
2. Movie Recommendations

Research
1. Neural Structure
Research
2. Hyper Parameter Tuning

Manufacturing
1. Roboticsand Automation
2. Processcontrol

Finance
1.Portfolio management
2. Quant Trading

Automotive :
1. Self Driving cars

Questions!

Thanks for Attending my
Session

Appendix

Start with Q()(S, a} for all s, a.
Get initial state s
Fork =1, 2, ... till convergence

Sample action a, get next state s’
If s’ is terminal: Chasing a nonstationary target!

target = R(s,a, s’
Sample new initial state s’

else:

target = R(s,a,s') + ymax Qx(s', ')

Ok+1 < Ok — aVoEyp(s)s,a) [(QO(S, a) - target(s'))z] |9=9k

g g
Updates are correlated within a trajectory!

What is Reinforcement Learning? - Recap

To become successfulin the industry, the person change his behavior - By learning and understanding

VW 4

Here, | denote = o

Person > Agent , - ﬁ“e“e'f"”"e“‘ :,%
Each skill / position = State
Data & Al industry 2 Environment

'ili

Probability = Transition Probability A'/Mﬂ
Promotion, Failure = Reward ay %
Scope of Each position = value of the state o ‘
Skill / Position transition behavior of the person = Policy e saturate

 How did | structurethis process to capture
What we need is optimal behavior / optimal policy to these interactions ?
have more success in the environment « Markov Family — Helped me (Lets dive

into small math part)

By selecting correct decisions / actionsin each state, the person can build his optimal policy (optimal
behavior) which can give him a great success

This Selection cannot be achieved directly, its by error and trail (Learning) ---= Reinforcement learning

How to Create that Strategy?

RL Algorithms
|
i R
Model-Free RL Model-Based RL
J L
i 3
i R f R}
Policy Optimization Q-Learning Learn the Model Given the Model
DQN — World Models |—> AlphaZero

A

Policy Gradient <——
‘, ‘ —'{ DDPG

A2C / A3C <€«—
= £ —*’ TD3

PPO pou—

A

QR-DQN —> MBMF

|
n
>
0
A

—
—P{ C51 | —F I2A
-

TRPO N HER MBVE

Q Learning - Q Table iteration

This is kind of a bureaucratic version of reinforcement learning.
An accountantfinds himself in a dark dungeon and all he can
come up with is walking around filling a spreadsheet.

O

What the accountantknows: O-
*The dungeonis 5 tiles long
*The possible actions are FORWARD and BACKWARD 2 ¢ O
*FORWARD is always 1 step, except on last tile it bumps into a
wall 2¢O

*BACKWARD always takes you back to the start :
*Sometimes there is a wind that flips your action to the O+
opposite direction
You will be rewarded on some tiles O' +10

Q Learning - Q Table iteration

Q(Sr; ar)“Q(Sr; a,) + a[rr+1+7\,mgx Q(5r+1, a) - Q(sr; ar)]

Current Q-table value we are updating

Learning rate

Reward

Discount

Estimated reward from our next action

Q Learning - Q Table iteration

Current state

O-

O~

ce— @

0 +[0.2]*[[2/+0.95* max(0, 0)-0]= +0.2

O-)+'_U

Gamble

Gamble

0+ 0.1*[10 + 0.95*max(0,0)-0] = +1.0

20O

O

+2

0+ 0.1*[2+0.95*max(0,0.2)-0] =+

Gamble

Q-table
+0.2
["] Learning rate Reward
Discount
+0.2 +0.2
+0.2 +02
+02 +0.2
+02 +0.2
+1.0
+0.2 +0.2
+1.0 +10
+02 +0.2
+10 +10
+02 +0.2 +0.219
0.219

T4y T T T T Ty T T

T4 T

O~

O~

O~

0+ 0.1*[0+ 0.95* max(0, 1.0) - 0]

O-)+;O

Gamble

Gamble

Gamble

+10 410
+02 +0.2 +0.219

+10 +10
+0.2 +0.2 +0.219

+0.095 +10 +1.0

+02 +0.2 +0219
+0.095
+0.095 +185 +1.0
+02 +0.2 +0219

1.0 + 0.1 *[10 + 0.95 * max(0, 1.0) - 1.0] = +1.85

o

+62.73 +6631 +70.82 +8263 +8451
+60.12 +61.22 +6343 +64.75 +6649

T™L T4 T L

Tl

Q(s,a) - Q(3,1) —

dil

So S1 S2 S3 S4

+4.21 +3.24 +1.84 +2.33 +3.73

+2.53 +7.44 +3.34 +5.31 +6.22

- +5.31

