
Thursday Learning Hour

Deep Q Learning

Prabakaran Chandran

25 March 2021

Agenda:

➢Reinforcement Learning – A small Recap
➢What is Q Function?
➢Traditional Q Learning
➢Deep Learning - overview
➢Deep Q Learning - Architecture and Learning Algorithm
➢Applications and Characteristics

Reinforcement learning - Recap

Agent Environment

Action

Observation

At state S1

Action A1 from (A1 , …. An)

Reward

Transition

Reinforcement learning - Recap

Agent Environment

Action

Observation

At state S1

Action A1 from (A1 , …. An)

Reward

Transition

What shall I do in this
Environment?

Agent Environment

Action

Observation

At state S1

Action A1 from (A1 , …. An)

Reward

Transition

I need to increase my
Rewards

I need a Strategy

Reinforcement learning - Recap

Markov Reward Process:

Possible State change
(process / Chain)

A B

FED

IHG

C

Each Transition will have its own reward point , Reward point can
be positive or negative depends on their properties.

Each State can have a value , which is expected return by being in
the state.

Ex: Value of A = 5 + 1 = 6(Expected Return)

A B

FED

IHG

C -1

+10

+1+5

Markov Decision Process:

A B

FED

IHG

C

He can take any Decision from the available action space , but
there can be a negative reward too. This selection of action

depends on Jeffery’s Behavior (Policy)

A B

FED

IHG

C -1

+10

+1
A B

FED

IHG

C

• At A (B , Right) and A(D,
down) are the possible
actions

• JD can select any one of
the action (Decision he
has to take)

Possible
Decisions by
selecting the
Actions at each
state.

This is what we
Jeffery need to
follow to have
more reward.

How can he
learn this ??

By solving this
MDP
Enviornment

Few
Intuitive
Scenarios

How to Create that Strategy?

• In order to reach the Strategy , Solution is needed for the
Environment.

• It means to reach the Optimal Policy , MDP has to be solved

• Optimal policy : π∗ = argmax E(R|π), the policy which gives more
return

• How to reach optimal policy? → Solve the Environment

How to Solve the Environment / MDP ?

There are two ways:
1. Go With the Cheat Sheet : Model-based RL uses experience to construct an internal model of the transitions

and immediate outcomes in the environment. Appropriate actions are then chosen by searching or planning

1. Learn on the Go: Model-free RL, on the other hand, uses experience to learn directly one or both of two
simpler quantities (state/ action values or policies) which can achieve the same optimal policy

Model Free Learning:

In Model-free learning the agent relies on trial-and-error experience for setting up the optimal policy.

Agent

Learn about States
and Actions

Learn Policy Directly
instead of States and

Actions

Evaluate the Value
function of State /
Action , Select the

Optimal State/ Actions

Evaluate the Policy
function and Improve

the Policy

Optimal Policy – The
strategy we want

Policy IterationValue Iteration

Model Free Learning:

Learn through the Value Function:

• Total Expected Return From the state / state – Action while
following a policy

• To measure How good is a state to be in? / How good is an
action to take?

• Two Types of Value Functions are there – One is to evaluate
State , another one is to evaluate an Action (Q Function)

• Action Value function defines the Quality of an action (A1)
taken in a given state (s1)

Learn through the Q Value Function:

Bellman Equation

• This Q Function help us to bring the Optimal State – Action pair because of its Greedy Behavior

• Quality here represents how useful a given action is in gaining some future reward.

• By Iterating the Q Value for all the State – Action pair until we reach the convergence in policy

• This sort of Q Value iteration is called as Q Learning

• For Every step Q Value will be updated based on the Evaluation

• If we have a Table of Q Value for each State – Action pair , An Agent Can use that as a Cheat Sheet.

Q Learning - Q Table iteration

• In Traditional Q Learning Method , Objective is to create a Exhaustive Q Table

• An Agent use the Q table as a Cheat sheet to Take state transition by selecting correct Action

• Temporal Difference Based Update Rule is used here.

• 𝑄𝑡+1 = 𝑄𝑡 +Δ𝑄 ;𝑁𝑒𝑤 𝑄 = 𝑂𝑙𝑑 𝑄 +𝑇𝑒𝑚𝑝𝑜𝑟𝑎𝑙 𝐷𝑖𝑓𝑓𝑒𝑟𝑒𝑛𝑐𝑒

➢ Q Learning Starts from Arbitrary Q Table
➢ Initial Action taken Randomly
➢ Reward will be measured for the current State

action pair and Future State Action pairs
➢ Q Value will be update

Deep Q Learning : Need of Deep Architecture

• Computation : Reinforcement learning can be sufficiently applicable to the environment where the all achievable
states can be manged (iterated) and stored in standard computer RAM memory.

• Number of States : However, the environment where the number of states overwhelms the capacity of
contemporary computers (for Atari games there are 12833600 states) the standard Reinforcement Learning
approach is not very applicable.

• Furthermore, in real environment, the Agent has to face with continuous states (not discrete), continuous variables
and continuous control (action) problems.

• Bearing in mind the complexity of environment the Agent has to operate in (number of states, continuous control)
the standard well defined Reinforcement Learning Q — table is replaced by Deep Neural Network (Q — Network)
which maps (non — linear approximation) environment states to Agent actions.

• Network architecture, choice of network hyper parameters and learning is performed during training phase
(learning of Q — Network weight).

Deep Q Learning : Architecture

Q Table will be used as look up
table / cheat sheet after

training/iteration

Deep Neural Network will be
used for Q Function

Approximation

At the end Action with Max Q Value will be selected and Agents will
move to next state. best_action= arg max(DQN predicted Q-values).

• Deep Q-Learning harness the
power of deep learning with so-
called Deep Q-Networks, or DQN
for short.

• In this scenario, these networks
are just standard feed forward
neural networks which are
utilized for predicting the best Q-
Value.

• Advanced DQN networks use
CNN layers to capture the states
from Visual Environment (
Games)

• In order for this approach to
work, the agent has to store
previous experiences in a local
memory, but more on that later.

Deep Learning : overview

Deep Q Neural Network: Architecture

➢ DQN is not a Supervised Learning , We don’t have labels to train
➢ The target is continuously changing with each iteration.
➢ Let’s include a copy of Q Network every iteration
➢ The first network, which is refereed to as Q-Network is calculating Q-Value in the state St.
➢ The second network, refereed to as Target Network is calculating Q-Value in the state St+1.
➢ the Q-Network retrieves the action-values Q(St,a).
➢ At the same time the Target-Networkuses the next stateSt+1 to calculateQ(St+1, a) for the Temporal

Difference target.
➢ In order to stabilize this training of two networks, on each N-th iteration parameters of the Q-

Network are copied over to the Target Network

Deep Q Neural Network: Experience Replay

• We already mentioned that the agent, in order to train neural
networks, has to store previous experiences.

• The naive Q-learning algorithm that learns from each of these
experiences tuples in sequential order runs the risk of getting
swayed by the effects of this correlation.

• Deep Q-Learning takes this to the next level and uses one more
concept to improve performances – experience replay.

• This concept is used for one more reason, to stabilize training
process. In a nutshell, the agent uses random batches of
experiences to train the networks.

• Experience replay is the memory that stores those experiences in
a form of a tuple <s, s’, a, r>:
➢ s – State of the agent
➢ a – Action that was taken in the state s by the agent
➢ r – Immediate reward received in state s for action a
➢ s’ – Next state of the agent after state s

Deep Q Neural Network: Training Algorithm

➢ actual= R + γ max A` Q(S`, A`)

➢ R → the current immediate reward
➢ S` → Next state
➢ max A` Q(S`, A`) → max(NN output list of

Q-values)

➢ γ → the discount factor γ → {0,1}

l2_loss = (predicted — actual) **2

Retail
1. Dynamic Pricing

2. Recommendation systems

Research
1. Neural Structure

Research
2. Hyper Parameter Tuning

Finance
1.Portfolio management

2. Quant Trading

Entertainment
1. Gaming platforms

2. Movie Recommendations

Manufacturing
1. Robotics and Automation

2. Process control

Automotive :
1. Self Driving cars

Deep Q Neural Network: Applications

Questions!

Thanks for Attending my
Session

Appendix

Q Learning - Introduction

1. To learn a Policy
2. Take action – inorder to increase the reward
3. How to know which will give us the Detail about what is good , what is bad

4. How do we buy a product / take a Decision --→Quality

5. Depends on State and Action

6. Pair of State action -→Quality of them Action Value Function

7. Formulae to calculate the Q value

8. With Just this Table -- > limit the actions → increase the Exploitation → Exploration is needed.

9. Add bellman story →Q function –Soving MDP

What is Reinforcement Learning? - Recap

To become successful in the industry , the person change his behavior - By learning and understanding

Here , I denote
• Person → Agent
• Each skill / position →State
• Data & AI industry → Environment
• Probability → Transition Probability
• Promotion , Failure → Reward
• Scope of Each position →value of the state
• Skill / Position transition behavior of the person →Policy

• What we need is optimal behavior / optimal policy to
have more success in the environment

• By selecting correct decisions / actions in each state , the person can build his optimal policy (optimal
behavior) which can give him a great success

• This Selection cannot be achieved directly , its by error and trail (Learning) ---→ Reinforcement learning

• How did I structure this process to capture
these interactions ?
• Markov Family – Helped me (Lets dive

into small math part)

How to Create that Strategy?

Q Learning - Q Table iteration
This is kind of a bureaucratic version of reinforcement learning.
An accountant finds himself in a dark dungeon and all he can
come up with is walking around filling a spreadsheet.

What the accountant knows:
•The dungeon is 5 tiles long
•The possible actions are FORWARD and BACKWARD
•FORWARD is always 1 step, except on last tile it bumps into a
wall
•BACKWARD always takes you back to the start
•Sometimes there is a wind that flips your action to the
opposite direction
•You will be rewarded on some tiles

Q Learning - Q Table iteration

Q Learning - Q Table iteration

