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Agenda:

➢Reinforcement Learning – A small Recap
➢What is Q Function?
➢Traditional Q Learning
➢Deep Learning - overview
➢Deep Q Learning  - Architecture and Learning Algorithm
➢Applications and Characteristics
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Environment?



Agent Environment

Action

Observation

At state S1

Action A1 from (A1 , …. An)

Reward

Transition

I need to increase my 
Rewards

I need a Strategy

Reinforcement learning - Recap



Markov Reward Process:

Possible State change 
(process / Chain)
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Each Transition will have its own reward point , Reward point can 
be positive or negative depends on their properties. 

Each State can have a value , which is expected return by being in 
the state.

Ex: Value of A = 5 + 1 = 6( Expected Return ) 
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Markov Decision Process:
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He can take any Decision from the available action space , but 
there can be a negative reward too. This selection of action 

depends on Jeffery’s Behavior (Policy)
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• At A ( B , Right ) and A( D, 
down) are the possible 
actions 

• JD can select any one of 
the action ( Decision he 
has to take)

Possible 
Decisions by 
selecting the 
Actions at each 
state.

This is what we 
Jeffery need to 
follow to have 
more reward.

How can he 
learn this ??

By solving this 
MDP 
Enviornment



Few 
Intuitive 
Scenarios



How to Create that Strategy?

• In order to reach the Strategy , Solution is needed for the 
Environment. 

• It means to reach the Optimal Policy ,  MDP has to be solved

• Optimal policy : π∗ = argmax E(R|π), the policy which gives more 
return

• How to reach optimal policy?  → Solve the Environment 

How to Solve the Environment / MDP ? 

There are two ways: 
1. Go With the Cheat Sheet : Model-based RL uses experience to construct an internal model of the transitions 

and immediate outcomes in the environment. Appropriate actions are then chosen by searching or planning

1. Learn on the Go: Model-free RL, on the other hand, uses experience to learn directly one or both of two 
simpler quantities (state/ action values or policies) which can achieve the same optimal policy



Model Free Learning:

In Model-free learning the agent relies on trial-and-error experience for setting up the optimal policy.

Agent

Learn about States 
and Actions

Learn Policy Directly 
instead of States and 

Actions

Evaluate the Value 
function of State / 
Action , Select the 

Optimal State/ Actions

Evaluate the Policy 
function and Improve 

the Policy 

Optimal Policy – The 
strategy we want

Policy IterationValue Iteration

Model Free Learning:



Learn through the Value Function:

• Total Expected Return From the state / state – Action while 
following a policy 

• To measure How good is a state to be in? / How good is an 
action to take?

• Two Types of Value Functions are there – One is to evaluate 
State , another one is to evaluate an Action ( Q Function)

• Action Value function defines the Quality of an action (A1) 
taken in a given state (s1)



Learn through the Q Value Function:

Bellman Equation

• This Q Function help us to bring the Optimal State – Action pair because of its Greedy Behavior

• Quality here represents how useful a given action is in gaining some future reward.

• By Iterating the Q Value for all the State – Action pair until we reach the convergence in policy

• This sort of Q Value iteration is called as Q Learning

• For Every step Q Value will be updated based on the Evaluation

• If we have a Table of Q Value for each State – Action pair , An Agent Can use that as a Cheat Sheet.



Q Learning  - Q Table iteration

• In Traditional Q Learning Method , Objective is to create a Exhaustive Q Table

• An Agent use the Q table as a Cheat sheet to Take state transition by selecting correct Action

• Temporal Difference Based Update Rule is used here.

• 𝑄𝑡+1 = 𝑄𝑡 +Δ𝑄 ;𝑁𝑒𝑤 𝑄 = 𝑂𝑙𝑑 𝑄 +𝑇𝑒𝑚𝑝𝑜𝑟𝑎𝑙 𝐷𝑖𝑓𝑓𝑒𝑟𝑒𝑛𝑐𝑒

➢ Q Learning Starts from Arbitrary Q Table
➢ Initial Action taken Randomly 
➢ Reward will be measured for the current State 

action pair and Future State Action pairs 
➢ Q Value will be update



Deep Q Learning : Need of Deep Architecture

• Computation : Reinforcement learning can be sufficiently applicable to the environment where the all achievable 
states can be manged (iterated) and stored in standard computer RAM memory. 

• Number of States : However, the environment where the number of states overwhelms the capacity of 
contemporary computers (for Atari games there are 12833600 states) the standard Reinforcement Learning 
approach is not very applicable. 

• Furthermore, in real environment, the Agent has to face with continuous states (not discrete), continuous variables 
and continuous control (action) problems.

• Bearing in mind the complexity of environment the Agent has to operate in (number of states, continuous control) 
the standard well defined Reinforcement Learning Q — table is replaced by Deep Neural Network (Q — Network) 
which maps (non — linear approximation) environment states to Agent actions. 

• Network architecture, choice of network hyper parameters and learning is performed during training phase 
(learning of Q — Network weight).



Deep Q Learning : Architecture

Q Table will be used as look up 
table / cheat sheet after 

training/iteration

Deep Neural Network will be 
used for Q Function 

Approximation

At the end Action with Max Q Value will be selected and Agents will 
move to next state. best_action= arg max(DQN predicted Q-values ).

• Deep Q-Learning harness the 
power of deep learning with so-
called Deep Q-Networks, or DQN 
for short. 

• In this scenario, these networks 
are just standard feed forward 
neural networks which are 
utilized for predicting the best Q-
Value.

• Advanced DQN networks use 
CNN layers to capture the states 
from Visual Environment ( 
Games)

• In order for this approach to 
work, the agent has to store 
previous experiences in a local 
memory, but more on that later.



Deep Learning : overview 



Deep Q Neural Network: Architecture

➢ DQN is not a Supervised Learning , We don’t have labels to train
➢ The target is continuously changing with each iteration.
➢ Let’s include a copy of Q Network every iteration
➢ The first network, which is refereed to as Q-Network is calculating Q-Value in the state St. 
➢ The second network, refereed to as Target Network is calculating Q-Value in the state St+1.
➢ the Q-Network retrieves the action-values Q(St,a).
➢ At the same time the Target-Networkuses the next stateSt+1 to calculateQ(St+1, a) for the Temporal 

Difference target. 
➢ In order to stabilize this training of two networks, on each N-th iteration parameters of the Q-

Network are copied over to the Target Network



Deep Q Neural Network:  Experience Replay

• We already mentioned that the agent, in order to train neural 
networks, has to store previous experiences.

• The naive Q-learning algorithm that learns from each of these 
experiences tuples in sequential order runs the risk of getting 
swayed by the effects of this correlation.

• Deep Q-Learning takes this to the next level and uses one more 
concept to improve performances – experience replay. 

• This concept is used for one more reason, to stabilize training 
process. In a nutshell, the agent uses random batches of 
experiences to train the networks. 

• Experience replay is the memory that stores those experiences in 
a form of a tuple <s, s’, a, r>:
➢ s – State of the agent
➢ a – Action that was taken in the state s by the agent
➢ r – Immediate reward received in state s for action a
➢ s’ – Next state of the agent after state s



Deep Q Neural Network: Training Algorithm

➢ actual= R + γ max A` Q(S`, A`)

➢ R → the current immediate reward
➢ S` → Next state
➢ max A` Q(S`, A`) → max( NN output list of 

Q-values)

➢ γ → the discount factor γ → {0,1}

l2_loss = (predicted — actual ) **2



Retail
1. Dynamic Pricing 

2. Recommendation systems

Research 
1. Neural Structure 

Research
2. Hyper Parameter Tuning

Finance 
1.Portfolio management 

2. Quant Trading

Entertainment 
1. Gaming platforms

2. Movie Recommendations 

Manufacturing 
1. Robotics and Automation 

2. Process control

Automotive :
1. Self Driving cars 

Deep Q Neural Network: Applications



Questions!



Thanks for Attending my 
Session



Appendix



Q Learning - Introduction

1. To learn a Policy 
2. Take action – inorder to increase the reward 
3. How to know which will give us the Detail about what is good , what is bad

4. How do we buy a product / take a Decision --→Quality 

5. Depends on State and Action

6. Pair of State action -→Quality of them   Action Value Function

7. Formulae to calculate the Q value 

8. With Just this Table  -- > limit the actions → increase the Exploitation  → Exploration is needed.

9. Add bellman story →Q function –Soving MDP 





What is Reinforcement Learning? - Recap

To become successful in the industry , the person change his behavior  - By learning and understanding  

Here , I denote
• Person  → Agent
• Each skill / position →State
• Data & AI industry → Environment
• Probability → Transition Probability
• Promotion , Failure → Reward 
• Scope of Each position →value of the state
• Skill / Position transition behavior of the person →Policy

• What we need is optimal behavior / optimal policy to 
have more success in the environment   

• By selecting correct decisions / actions in each state , the person can build his optimal policy ( optimal 
behavior) which can give him a great success 

• This Selection cannot be achieved directly , its by error and trail (Learning) ---→ Reinforcement learning

• How did I structure this process to capture 
these interactions ?
• Markov Family – Helped me ( Lets dive 

into small math part)



How to Create that Strategy?



Q Learning  - Q Table iteration
This is kind of a bureaucratic version of reinforcement learning. 
An accountant finds himself in a dark dungeon and all he can 
come up with is walking around filling a spreadsheet.

What the accountant knows:
•The dungeon is 5 tiles long
•The possible actions are FORWARD and BACKWARD
•FORWARD is always 1 step, except on last tile it bumps into a 
wall
•BACKWARD always takes you back to the start
•Sometimes there is a wind that flips your action to the 
opposite direction
•You will be rewarded on some tiles



Q Learning  - Q Table iteration



Q Learning  - Q Table iteration


