Mu Sigma

Thursday Learning Hour

Math Series: Introduction to Linear Algebra- Session 1

Basic geometric transformation

Flip

O当 Slide

Resize

Shear

Turn	Rotate
Flip	Reflection
Slide	Translation
Resize	Dilation
Shear	Skew

Quiz - name the geometric transformation

Quiz - name the geometric transformation

Quiz - name the geometric transformation

What is this?

1. Scaling
2. Rotation (clockwise)
3. Rotation (anti-clock)
4. Tramslation

$\left[\begin{array}{cc}S_{x} & 0 \\ 0 & S_{y}\end{array}\right]$

$$
\begin{aligned}
& {\left[\begin{array}{cc}
\cos \theta & -\sin \theta \\
\sin \theta & \cos \theta
\end{array}\right]} \\
& {\left[\begin{array}{cc}
\cos \theta & \sin \theta \\
-\sin \theta & \cos \theta
\end{array}\right]}
\end{aligned}
$$

$\left[\begin{array}{ll}1 & 0 \\ 0 & 1 \\ t_{\mathrm{s}} & \mathrm{t}_{\mathrm{y}}\end{array}\right]$
5. Reflection

$$
\left[\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right]
$$

(about x axis)
6. Reflection

$$
\left[\begin{array}{cc}
-1 & 0 \\
0 & 1
\end{array}\right]
$$

(about y axis)
7. Reflection

$$
\left[\begin{array}{cc}
-1 & 0 \\
0 & -1
\end{array}\right]
$$

(about origin)
B. Reflection about $Y=X$
$\left[\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right]$
9. Reflection about $Y=-x$
10. Shearing in \times direction
11. Shearing in Y direction
12. Shearing in both x and y direction $\left[\begin{array}{cc}1 & 0 \\ \operatorname{sh}_{\mathrm{x}} & 1\end{array}\right]$
$\left[\begin{array}{cc}1 & \mathrm{Sh}_{y} \\ 0 & 1\end{array}\right]$

$$
\left[\begin{array}{cc}
1 & \mathrm{Sh}_{y} \\
\mathrm{Sh}_{\mathrm{s}} & 1
\end{array}\right]
$$

Unit vectors along pairwise mutually perpendicular standard $\mathrm{x}-\mathrm{y}$ - , $\mathrm{z}-$ axes are called standard basis

Change of Basis

Linear transformation

[4] 1 en Σ

$$
\begin{aligned}
& \text { s(a) - (1) } \\
& \text { s(i) }-(-2) \\
& s\left(\text { (2) }-s s(2)+s\left({ }^{2}\right)\right. \\
& =3 \frac{2}{4}+4+\frac{2}{2} \\
& \text { - (2i) } \\
& \text { nexemerts } 5 \text { or }\left(\begin{array}{ll}
2 & -\frac{1}{2} \\
1 & 2
\end{array}\right) \\
& s\binom{1}{4}-\left(\begin{array}{cc}
2 & -\frac{t}{2} \\
3 & 2
\end{array}\right)\binom{3}{4} \\
& -3\binom{1}{1}+\left(-\frac{3}{2}\right)
\end{aligned}
$$

Linear transformati on changes the axis too except for eigen vectors.

PCA in a nutshell

1. correlated hi-d data ("urefu" means "height" in Swahili)

2. center the points

3. compute covariance matrix

$$
\begin{array}{ll}
\mathrm{h} \\
\mathbf{u}
\end{array}\left[\begin{array}{cc}
\mathrm{h} & \mathrm{u} \\
2.0 & 0.8 \\
0.8 & 0.6
\end{array}\right] \rightarrow \operatorname{cov}(h, u)=\frac{1}{n} \sum_{i=1}^{n} h_{i} u_{i}
$$

4. eigenvectors + eigenvalues

$$
\begin{gathered}
{\left[\begin{array}{ll}
2.0 & 0.8 \\
0.8 & 0.6
\end{array}\right]\left[\begin{array}{l}
e_{h} \\
e_{u}
\end{array}\right]=\lambda_{e}\left[\begin{array}{l}
e_{h} \\
e_{u}
\end{array}\right]} \\
{\left[\begin{array}{ll}
2.0 & 0.8 \\
0.8 & 0.6
\end{array}\right]\left[\begin{array}{l}
\mathrm{f}_{\mathrm{h}} \\
\mathrm{f}_{u}
\end{array}\right]=\lambda_{\mathrm{f}}\left[\begin{array}{l}
\mathrm{f}_{\mathrm{h}} \\
\mathrm{f}_{\mathrm{u}}
\end{array}\right]} \\
\text { eig(cov(data))) }
\end{gathered}
$$

5. pick $\mathrm{m}<\mathrm{d}$ eigenvectors w. highest eigenvalues

How many animals are under the water?

Factor Analysis

How many animals are under the water? How many animals are under the water?

Factor Analysis

How many animals are under the water? How many animals are under the water?

Factor Analysis

How many animals are under the water? How many animals are under the water?

Thank You

