

Thursday Learning Hour

Math Series: Introduction to Linear Algebra- Session 1

Do The Math

Chicago, IL Bangalore, India www.mu-sigma.com

8th September 2022

Basic geometric transformation

You know
Mathematicians
are funny
people

Turn Rotate

Flip Reflection

Slide Translation

Resize Dilation

Shear Skew

Quiz - name the geometric transformation

Quiz - name the geometric transformation

Quiz - name the geometric transformation

What is this?

Basic transformations can be represented in a matrix form

1. Scaling	$\begin{bmatrix} S_x & 0 \\ 0 & S_y \end{bmatrix}$
2. Rotation (clockwise)	$\begin{bmatrix} \cos\theta & -\sin\theta \\ \sin\theta & \cos\theta \end{bmatrix}$
3. Rotation (anti-clock)	$\begin{bmatrix} \cos\theta & \sin\theta \\ -\sin\theta & \cos\theta \end{bmatrix}$
4. Translation	$\begin{bmatrix} 1 & 0 \\ 0 & 1 \\ t_x & t_y \end{bmatrix}$
5. Reflection	$\begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix}$
(about x axis)	
6. Reflection	$\begin{bmatrix} -1 & 0 \\ 0 & 1 \end{bmatrix}$
(about y axis)	
7. Reflection	$\begin{bmatrix} -1 & 0 \\ 0 & -1 \end{bmatrix}$
(about origin)	
8. Reflection about Y=X	$\begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$
9. Reflection about Y= −X	$\begin{bmatrix} 0 & -1 \\ -1 & 0 \end{bmatrix}$
10. Shearing in X direction	$\begin{bmatrix} 1 & 0 \\ \mathrm{Sh_x} & 1 \end{bmatrix}$
11. Shearing in Y direction	$\begin{bmatrix} 1 & Sh_y \\ 0 & 1 \end{bmatrix}$
	г 1 Sh1

12. Shearing in both x and y direction

Unit vectors
along pairwise
mutually
perpendicular
standard x-, y-, zaxes are called
standard basis

Linear transformation

Linear transformati on changes the axis too except for eigen vectors.

PCA in a nutshell

1. correlated hi-d data

2. center the points

3. compute covariance matrix

h u
h 2.0 0.8 cov(h,u) =
$$\frac{1}{n} \sum_{i=1}^{n} h_i u_i$$
u 0.8 0.6

4. eigenvectors + eigenvalues

$$\begin{pmatrix} 2.0 & 0.8 \\ 0.8 & 0.6 \end{pmatrix} \begin{pmatrix} e_h \\ e_u \end{pmatrix} = \lambda_e \begin{pmatrix} e_h \\ e_u \end{pmatrix}$$

$$\begin{pmatrix} 2.0 & 0.8 \end{pmatrix} \begin{pmatrix} f_h \\ f_h \end{pmatrix} = \lambda_e \begin{pmatrix} f_h \\ f_h \end{pmatrix}$$

$$\begin{bmatrix} 2.0 & 0.8 \\ 0.8 & 0.6 \end{bmatrix} \begin{bmatrix} f_h \\ f_u \end{bmatrix} = \lambda_f \begin{bmatrix} f_h \\ f_u \end{bmatrix}$$

eig(cov(data))

7. uncorrelated low-d data

6. project data points to those eigenvectors

Copyright © 2011 Victor Lavrenko

pick m<d eigenvectors w. highest eigenvalues

How many animals are under the water?

Factor Analysis

How many animals are under the water? How many animals are under the water?

Factor Analysis

How many animals are under the water? How many animals are under the water?

Factor Analysis

How many animals are under the water? How many animals are under the water?

Thank You