

Mu Sigma

Thursday Learning Hour –Math Series Linear Algebra Session 2

**Basics of Span, Basis, Dimension** 



Proprietary Information | This document and its attachments are confidential. Any unauthorized copying, disclosure or distribution of the material is strictly forbidden

**Basic Transformation** 



| С               | Turn   | Rotate      |
|-----------------|--------|-------------|
| ٢               | Flip   | Reflection  |
| <b>FO</b>       | Slide  | Translation |
| ●→◆<br>↓<br>■←● | Resize | Dilation    |
| $\checkmark$    | Shear  | Skew        |



## **Quiz - name the geometric transformation**





## **Quiz - name the geometric transformation**





## **Quiz - name the geometric transformation**





## What is this?





|  | 1. Scaling                                 | $\begin{bmatrix} S_x & 0\\ 0 & S_y \end{bmatrix}$                                   |
|--|--------------------------------------------|-------------------------------------------------------------------------------------|
|  | 2. Rotation (clockwise)                    | $\begin{bmatrix} \cos\theta & -\sin\theta \\ \sin\theta & \cos\theta \end{bmatrix}$ |
|  | 3. Rotation (anti-clock)                   | $\begin{bmatrix} \cos\theta & \sin\theta\\ -\sin\theta & \cos\theta \end{bmatrix}$  |
|  | 4. Translation                             | $\begin{bmatrix} 1 & 0 \\ 0 & 1 \\ t_x & t_y \end{bmatrix}$                         |
|  | 5. Reflection                              | $\begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix}$                                     |
|  | (about x axis)                             |                                                                                     |
|  | 6. Reflection                              | $\begin{bmatrix} -1 & 0 \\ 0 & 1 \end{bmatrix}$                                     |
|  | (about y axis)                             |                                                                                     |
|  | 7. Reflection                              | $\begin{bmatrix} -1 & 0 \\ 0 & -1 \end{bmatrix}$                                    |
|  | (about origin)                             |                                                                                     |
|  | 8. Reflection about Y=X                    | $\begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$                                      |
|  | <ol> <li>Reflection about Y= -X</li> </ol> | $\begin{bmatrix} 0 & -1 \\ -1 & 0 \end{bmatrix}$                                    |
|  | 10. Shearing in X direction                | $\begin{bmatrix} 1 & 0\\ Sh_x & 1 \end{bmatrix}$                                    |
|  | 11. Shearing in Y direction                | $\begin{bmatrix} 1 & Sh_y \\ 0 & 1 \end{bmatrix}$                                   |
|  | 12. Shearing in both x and y direction     | on $\begin{bmatrix} 1 & Sh_y \\ Sh_x & 1 \end{bmatrix}$                             |





**Unit vectors** along pairwise mutually perpendicular standard x-, y-, z- axes are called standard basis









## **Linear transformation**











© 2020 Mu Sigma | Reproduction Prohibited

# How many animals are under the water?





## **Factor Analysis**

How many animals are under the water? How many animals are under the water?





## **Factor Analysis**

How many animals are under the water? How many animals are under the water?





## **Factor Analysis**

How many animals are under the water? How many animals are under the water?









(a) Principal Components Model



(b) Factor Analysis Model



#### **Vector space**

color red, ruby 1) u + v exists in V closure under addition green 2) u + v = v + ucommunative inflection 3) (u+v)+w = u+(v+w)associative 4) 0 exists in V, ie u+0=uadditive identity 5)  $\forall u \in V \in (-u) \ s.t. \ u + (-u) = 0$ inverse stopwords -6)  $cu \ exists \ in V$ closure under scalar multiplication wave, waving a, the 7) c(u+v) = cu+cvdistributive 1.0 8) (c+d)u = cu + dudistributive motion 9) c(du) = (cd)ufasi ¥aircraft 10) 1u = umultiplicative identity 1.0vehicle car, auto synonymy



## **Gram Schmidt orthogonalization process**





## **Duality**







### Rank





## **Singular value Decomposition**







## **Difference between PCA and LDA**

# Quiz?

What is the difference between LDA & PCA?



http://stackoverflow.com/questions/33576963/dimensions-reduction-in-matlab-using-pca

Created by - Gorsal Prasad Malakae

52

## PCA vs LDA

| Features                                         | Principal Component<br>Analysis                                                                                                                                                                                                               | Linear Discriminant<br>Analysis                                                                                                                                            |
|--------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Discrimination<br>between classes                | PCA deals with the data in<br>its entirety for the<br>principal components<br>analysis without paying<br>any particular attention to<br>the underlying class<br>structure.                                                                    | LDA deals directly with discrimination between classes.                                                                                                                    |
| Supervised<br>learning technique                 | PCA is an unsupervised technique.                                                                                                                                                                                                             | LDA is a supervised<br>learning technique that<br>relies on class labels.                                                                                                  |
| Focus                                            | PCA searches for the directions that have largest variations.                                                                                                                                                                                 | LDA maximizes the<br>ration of between-class<br>variation and with-in<br>class variation.                                                                                  |
| Directions of<br>maximum<br>discrimination       | The directions of<br>maximum variance are not<br>necessarily the directions<br>of the maximum<br>discrimination since there<br>is no attempt to use the<br>class information such as<br>the between-class scatter<br>and within-class scatter | LDA is guaranteed to<br>find the optimal<br>discriminant directions<br>when the class densities<br>are Gaussian with the<br>same covariance matrix<br>for all the classes. |
| Well distributed<br>classes in small<br>datasets | PCA is less superior to LDA.                                                                                                                                                                                                                  | LDA is superior to PCA                                                                                                                                                     |
| Computations for<br>large datasets               | PCA requires fewer computations.                                                                                                                                                                                                              | LDA requires<br>significantly more<br>computation than PCA<br>for large datasets                                                                                           |
| Applications                                     | Application of PCA in the<br>prominent field of criminal<br>investigation is beneficial.                                                                                                                                                      | Linear Discriminant<br>Analysis for data<br>classification is applied<br>to classification problem<br>in speech<br>recognition.                                            |



. .



## **Thank You**

© 2020 Mu Sigma | Reproduction Prohibited