Mu Sigma
Thursday Learning Hour -Math Series Linear Algebra Session 2
Basics of Span, Basis, Dimension

Do The Math
Chicago, IL
Bangalore, India
www.mu-sigma.com
29th September 2022

C	Turn	Rotate
-	Flip	Reflection
ロ\%	Slide	Translation
-	Resize	Dilation
\checkmark	Shear	Skew

Quiz - name the geometric transformation

Quiz - name the geometric transformation

Quiz - name the geometric transformation

What is this?

1. Scaling	$\left[\begin{array}{cc}S_{x} & 0 \\ 0 & S_{y}\end{array}\right]$
2. Rotation (clockwise)	$\left[\begin{array}{ll} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{array}\right]$
3. Rotation (anti-clock)	$\left[\begin{array}{cc} \cos \theta & \sin \theta \\ -\sin \theta & \cos \theta \end{array}\right]$
4. Translation	$\left[\begin{array}{ll}1 & 0 \\ 0 & 1 \\ t_{x} & t_{y}\end{array}\right]$
5. Reflection (about \times axis)	$\left[\begin{array}{cc}1 & 0 \\ 0 & -1\end{array}\right]$
6. Reflection (about y axis)	$\left[\begin{array}{cc}-1 & 0 \\ 0 & 1\end{array}\right]$
7. Reflection (about origin)	$\left[\begin{array}{cc}-1 & 0 \\ 0 & -1\end{array}\right]$
8. Reflection about $\gamma=\times$	$\left[\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right]$
9. Reflection about $Y=-X$	$\left[\begin{array}{cc}0 & -1 \\ -1 & 0\end{array}\right]$
10. Shearing in \times direction	$\left[\begin{array}{cc}1 & 0 \\ \operatorname{Sh}_{\mathrm{s}} & 1\end{array}\right]$
11. Shearing in Y direction	$\left[\begin{array}{cc}1 & \mathrm{Sh}_{y} \\ 0 & 1\end{array}\right]$
12. Shearing in both \times and	$\left[\begin{array}{cc}1 & \mathrm{Sh}_{y} \\ \mathrm{Sh}_{\mathrm{s}} & 1\end{array}\right]$

(about \times axis)
6. Reflection
$\left[\begin{array}{cc}-1 & 0 \\ 0 & -1\end{array}\right]$
$\left[\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right]$
$\left[\begin{array}{cc}0 & -1 \\ -1 & 0\end{array}\right]$
$\left[\begin{array}{cc}1 & 0 \\ \operatorname{sh}_{\mathrm{s}} & 1\end{array}\right]$
$\left[\begin{array}{cc}1 & \mathrm{Sh}_{y} \\ 0 & 1\end{array}\right]$
12. Shearing in both \times and y direction
$\left[\begin{array}{cc}1 & \mathrm{Sh}_{\mathrm{y}} \\ \mathrm{Sh}_{\mathrm{x}} & 1\end{array}\right]$

Unit vectors
 along pairwise mutually perpendicular standard $x-, y-$,
 z - axes are called standard basis

Linear transformation
(4) at

$$
\begin{aligned}
& =\binom{2}{0}-\binom{2}{2} \\
& \text { s(} \left.\begin{array}{l}
\% \\
1
\end{array}\right)=\left(\frac{-1}{2}\right) \\
& \text { is }\binom{3}{4}=35\binom{1}{2}+4 s\binom{2}{2} \\
& -1\left(\frac{2}{1}\right)+1\left(-\frac{3}{2}\right) \\
& =\left(\begin{array}{c}
\text { 2 }
\end{array}\right) \\
& \text { Fepresert } 5 \text { bo }\left(\begin{array}{ll}
2 & -1 \\
1 & 2
\end{array}\right) \\
& s\left(\frac{1}{4}\right)-\left(\begin{array}{cc}
2 & -\frac{1}{3}
\end{array}\right)\left(\frac{3}{4}\right) \\
& -3\left(\begin{array}{l}
(2) \\
0
\end{array}+4\binom{-2}{2}\right.
\end{aligned}
$$

PCA in a nutshell

7. uncorrelated low-d data

6. project data points to those eigenvectors

3. compute covariance matrix

$$
\mathrm{h}\left[\begin{array}{ll}
2.0 & 0.8 \\
\mathbf{u} & 0.8
\end{array}\right] \rightarrow \operatorname{cov}(h, u)=\frac{1}{n} \sum_{i=1}^{n} h_{i} u_{i}
$$

4. eigenvectors + eigenvalues

$$
\begin{gathered}
{\left[\begin{array}{ll}
2.0 & 0.8 \\
0.8 & 0.6
\end{array}\right]\left[\begin{array}{l}
e_{n} \\
e_{\psi}
\end{array}\right]=\lambda_{e}\left[\begin{array}{l}
e_{n} \\
e_{W}
\end{array}\right]} \\
{\left[\begin{array}{ll}
2.0 & 0.8 \\
0.8 & 0.6
\end{array}\right]\left[\begin{array}{l}
f_{n} \\
f_{u}
\end{array}\right]=\lambda_{t}\left[\begin{array}{l}
f_{n} \\
f_{u}
\end{array}\right]} \\
\text { eig (cov(data)) }
\end{gathered}
$$

5. pick $\mathrm{m}<\mathrm{d}$ eigenvectors w. highest eigenvalues

How many animals are under the water?

Factor Analysis

How many animals are under the water? How many animals are under the water?

Factor Analysis

How many animals are under the water? How many animals are under the water?

Factor Analysis

How many animals are under the water? How many animals are under the water?

Vector space

1) $u+v$ exists in V
2) $u+v=v+u$
3) $(u+v)+w=u+(v+w)$
4) 0 exists in V, ie $u+0=u$
5) $\forall u \in V \in(-u) s t . u+(-u)=0$
6) cu exists in V
7) $c(u+v)=c u+c v$
8) $(\mathrm{c}+\mathrm{d}) u=\mathrm{c} u+\mathrm{d} u$
9) $\mathrm{c}(\mathrm{d} l)=(\mathrm{cd}) u$
10) $l u=u$
closwe under addition
communative
associative
additive identity
inverse
closure under scalar multiplication
distributive
distributive
multiplicative identity

Gram Schmidt orthogonalization process

$\mathrm{u}_{1}=\mathrm{v}_{1}$,
$\mathbf{u}_{2}=\mathbf{v}_{2}-\operatorname{proj}_{\mathrm{m}_{1}}\left(\mathbf{v}_{2}\right)$,
$\mathbf{u}_{4}=v_{3}=\operatorname{proj}_{\mathrm{m}_{1}}\left(\mathbf{v}_{3}\right)=\operatorname{proj}_{\mathrm{m}_{1}}\left(\mathbf{v}_{3}\right)$,
$\omega_{4}=v_{4}-\operatorname{proj}_{\mathrm{u}_{1}}\left(\mathrm{v}_{4}\right)-\operatorname{proj}_{\mathrm{m}_{2}}\left(\mathrm{v}_{4}\right)-\operatorname{proj}_{\mathrm{u}_{1}}\left(\mathrm{v}_{4}\right)$,
$e_{1}=\frac{\mathbf{u}_{1}}{\left\|\mathbf{u}_{1}\right\|}$
$e_{2}=\frac{\mathbf{u}_{2}}{\left\|\mathbf{u}_{2}\right\|}$
$e_{3}=\frac{\mathbf{u}_{3}}{\left\|\mathbf{u}_{3}\right\|}$
$\mathbf{e}_{4}=\frac{\mathbf{u}_{4}}{\left\|\mathbf{u}_{4}\right\|}$
$\mathrm{u}_{k}=\mathrm{v}_{k}-\sum_{j=1}^{k=1} \operatorname{proj}_{\mathrm{u}_{j}}\left(\mathrm{v}_{k}\right)$,
$e_{k}=\frac{\mathbf{u}_{k}}{\left\|\mathbf{u}_{k}\right\|^{\prime}}$,

Berfor
Burlin rector
$\mathrm{B}_{11} \boldsymbol{H}_{1}, \mathrm{H}_{1}$

Finh faverom

Thind urem

Duality

Rank

Singular value Decomposition

Difference between PCA and LDA

Quiz?

- What is the difference between LDA \& PCA?

PCA vs LDA

Heatures	primcipal Componeme Analysis	Himeze Disceriminame Analysis
Discrinnination between classes	PLA deals with the data in its entirety for the principal components analysis without paying any particular attention to the underlying class structure.	I A A deals directly with discrinnination between classes.
Supervised learning technique	pCA is an umsupervised technique.	ID A is a supervised learning technique that relies on class labels.
Focus	PCA searches for the directions that have largest variations.	```IDA maximizes the ration of between-class variation and vith-in class variation.```
$\begin{aligned} & \text { Dicertions of } \\ & \text { maximum } \\ & \text { discrimination } \end{aligned}$	The directions of maximum variance are not necessarily the directions Qf the maximum discrimination since there is no attempt to use the class information such as the between-class scatter and within-class scatter	IDA is euaranteed to find the optimal discriminant directions when the class densities are Gavissian with the same covariance matrix for all the classes.
Vell distributed classes in small datzasets	pCA is less superior to IDA.	IDA is superior to pCA
Computations For laree datasets	peA requires fever computations.	```IDA reqwires significeantly moxe computation than p<A for large datzasets```
Applications	Application of PCA in the prominent field of criminal investigation is beneficial.	Tinear Discriminant Analysis for data classification is applied to classification problen in speech recopnition.

Thank You

