Mu Sigma Thursday Learning Hour Monte Carlo Simulation By Prabhu Amarnath

Do The Math

Chicago, IL Bangalore, India www.mu-sigma.com

03/02/2022

Proprietary Information

"This document and its attachments are confidential. Any unauthorized copying, disclosure or distribution of the material is strictly forbidden"

Agenda:

- 1. Idea of Monte Carlo Simulation
- 2. A few examples
- 3. Pitfalls
- 4. Mu Sigma artifact

Idea of randomness

Find the area of any shape:

It is very difficult to use calculus to find the area of an object such as the one shown to the right.

But using the Monte Carlo Method it's easy.

Just find the relative frequency

Box it.

Hit it randomly

Find the proportion of hits

This proportion times the area of the box must be an indicator of the are of the image.

More trials

Probably This is better than the previous.

Monte-Carlo Techniques

- Problem: What is the probability that 10 dice throws add up exactly to 32?
- Exact Way. Calculate this exactly by counting all possible ways of making 32 from 10 dice.
- Approximate (Lazy) Way. Simulate throwing the dice (say 500 times), count the number of times the results add up to 32, and divide this by 500.
- Lazy Way can get quite close to the correct answer quite quickly.

Monte Carlo simulation: technique that combines distributions with random number generation

Random numbers can be generated in different ways Any variable has a probability distribution for its occurrence

Best way to relate random number to a variable is to use cumulative probability distribution

(probability density functions - pdf)

The daily demand for clone packs (80 seedlings) during Spring months was studied and the probabilities are the following:

BECAUSE, although the probability is known (the relative frequency of each demand level), the order of occurrence is not

If the distribution is known, WHY do

we use **random numbers** to

simulate it?

Sample: a proper subset of the population

Assume that the demand/day is given by: Relative frequencies (probability)'

If 10000 **random numbers** were drawn it would be expected that the number of observations per class would be:

Deman d (x)	frequencie s	observations
0	0.05	500
1	0.1	1000
2	0.2	2000
3	0.3	3000
4	0.2	2000
5	0.15	1500

Assume that the demand/day is given by: Relative frequencies (probability)

Cumulative frequencies (probability)

Deman d (x)	Cumulative probability	Interval for random numbers
0	0.05	0 - 4
1	0.15	5 – 14
2	0.35	15 – 34
3	0.65	35 – 64
4	0.85	65 – 84
5	1	85 – 99

Cumulative frequencies (probability)

Simulate the demand for 10 days

Demand	Cumulative	Interval for random				
(x)	nequencie	numbers	day	Random number	der	nand
()	S		1	14	(1
	0.05	0 - 4				9
			2			
1	0.15	5 – 14	3			
2	0.35	15 - 34	0			
2	0.00	13 - 54	4			
3	0.65	35 – 64	5			
Δ	0.85	65 84	0			
4	0.00	05 - 04	6			
5	1	85 – 100	7			
			1			
			8			
			9			
			10			

Simulate the demand for 10 days

Deman d (x)	Cumulative frequencie s	Interval for random numbers
0	0.05	0-4
1	0.15	5 – 14
2	0.35	15 – 34
3	0.65	35 – 64
4	0.85	65 – 84
5	1	85 – 100

Simulate the demand for 10 days

day	Random number	demand
1	14	1
2	74	4
3	24	2
4	87	5
5	7	1
6	45	3
7	26	2
8	66	4
9	26	2
10	94	5

In general, Monte Carlo Simulation is roughly composed of five steps:

- 1. Set up probability distribution that will be considered in the simulation
- 2. Build cumulative probability distribution
- 3. Establish an interval of random numbers for each variable
- 4. Generate random numbers
- 5. Simulate trials

 Set up probability distributions that will be considered in the simulation

 Set up probability distributions that will be considered in the simulation

2. Build cumulative probability distributions

- 1. Set up probability distributions that will be considered in the simulation
- 2. Build cumulative probability distributions

3. Establish an interval of random numbers for each variable

X (distribution	distribution	aux	lower lim	upper lim	interval
0	0.1	0.1	10	0	9	0 - 9
1	0.2	0.3	30	10	29	10 - 29
2	0.25	0.55	55	30	54	30 - 54
3	0.25	0.8	80	55	79	55 - 79
4	0.15	0.95	95	80	94	80 - 94
5	0.05	1	100	95	99	95 - 99
у	distribution	cumulative distribution	aux	lower lim	upper lim	interval
2	0.25	0.25	25	0	24	0 - 24
3	0.3	0.55	55	25	54	25 - 54
4	0.25	0.8	80	55	79	55 - 79
5	0.2	1	100	80	99	80 - 99
z (distribution	cumulative distribution	aux	lower lim	upper lim	interval
4	0.3	0.3	30	0	29	0 - 29
5	0.5	0.8	80	30	79	30 - 79
6	0.2	1	100	80	99	80 - 99

- 1. Set up probability distributions that will be considered in the simulation
- 2. Build cumulative probability distributions
- 3. Establish an interval of random numbers for each variable
- 4. Generate random numbers

trial nr	rand_x	rand_y	rand_z
1	43	22	1
2	74	9	8
3	84	10	82
4	42	38	65
5	83	16	34
6	25	1	27
7	21	67	62
8	25	38	58
9	83	65	42
10	76	25	32
11	74	27	63
12	68	73	55
13	3	7	96
14	60	53	29
15	35	34	31
16	56	25	17
17	71	83	83
18	15	72	49

- 1. Set up probability distributions that will be considered in the simulation
- 2. Build cumulative probability distributions
- 3. Establish an interval of random numbers for each variable
- 4. Generate random numbers
- 5. Simulate trials

trial nr	rand_x	rand_y	rand_z	x	у	z	w
1	43	22	1	2	2	4	18
2	74	9	8	3	2	4	23
3	84	10	82	4	2	6	30
4	42	38	65	2	3	5	21
5	83	16	34	4	2	5	29
6	25	1	27	1	2	4	13
7	21	67	62	1	4	5	18
8	25	38	58	1	3	5	16
9	83	65	42	4	4	5	33
10	76	25	32	3	3	5	26
11	74	27	63	3	3	5	26
12	68	73	55	3	4	5	28
13	3	7	96	0	2	6	10
14	60	53	29	3	3	4	25
15	35	34	31	2	3	5	21
16	56	25	17	3	3	4	25
17	71	83	83	3	5	6	31
18	15	72	49	1	4	5	18

- 1. Set up probability distributions that will be considered in the simulation
- 2. Build cumulative probability distributions
- 3. Establish an interval of random numbers for each variable
- 4. Generate random numbers
- 5. Simulate trials

trial nr	rand_ x	rand_ y	rand_ z	x	у	z	w
1	43	22	1	2	2	4	18
2	74	9	8	3	2	4	23
3	84	10	82	4	2	6	30
4	42	38	65	2	3	5	21
5	83	16	34	4	2	5	29
6	25	1	27	1	2	4	13
7	21	67	62	1	4	5	18
8	25	38	58	1	3	5	16
9	83	65	42	4	4	5	33
10	76	25	32	3	3	5	26
11	74	27	63	3	3	5	26
12	68	73	55	3	4	5	28
13	3	7	96	0	2	6	10
14	60	53	29	3	3	4	25
15	35	34	31	2	3	5	21
16	56	25	17	3	3	4	25
17	71	83	83	3	5	6	31
18	15	72	49	1	4	5	18

class	freq	prob		
5 – 14 (10)	2	(2/18)	0.11	
15 – 24 (20)	8	(8/18)	0.44	
25 – 34 (30)	8	(8/18)	0.44	
35 – 44 (40)	0	0		
	18			

Mu Sigma Artifact

Thank You